Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée > analyse factorielle > analyse de groupement
analyse de groupementSynonyme(s)analyse par segmentation analyse des groupesVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change / Debojyoti Chakraborty in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
![]()
[article]
Titre : Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change Type de document : Article/Communication Auteurs : Debojyoti Chakraborty, Auteur ; Norbert Móricz, Auteur ; Ervin Rasztovits, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : Article 26 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] conservation des ressources forestières
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] Europe (géographie politique)
[Termes descripteurs IGN] outil d'aide à la décision
[Termes descripteurs IGN] peuplement forestier
[Termes descripteurs IGN] vulnérabilité
[Vedettes matières IGN] Ecologie forestièreRésumé : (Auteur) We developed a dataset of the potential distribution of seven ecologically and economically important tree species of Europe in terms of their climatic suitability with an ensemble approach while accounting for uncertainty due to model algorithms. The dataset was documented following the ODMAP protocol to ensure reproducibility. Our maps are input data in a decision support tool “SusSelect” which predicts the vulnerability of forest trees in climate change and recommends adapted planting material. Numéro de notice : A2021-329 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-021-01029-4 date de publication en ligne : 22/03/2021 En ligne : https://doi.org/10.1007/s13595-021-01029-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97490
in Annals of Forest Science [en ligne] > vol 78 n° 2 (June 2021) . - Article 26[article]A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media / Yi Bao in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
![]()
[article]
Titre : A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media Type de document : Article/Communication Auteurs : Yi Bao, Auteur ; Zhou Huang, Auteur ; Linna Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 639 - 660 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] géopositionnement
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] service fondé sur la position
[Termes descripteurs IGN] utilisateur
[Termes descripteurs IGN] Wuhan (Chine)Résumé : (auteur) Location prediction based on spatio-temporal footprints in social media is instrumental to various applications, such as travel behavior studies, crowd detection, traffic control, and location-based service recommendation. In this study, we propose a model that uses geotags of social media to predict the potential area containing users’ next locations. In the model, we utilize HiSpatialCluster algorithm to identify clustering areas (CAs) from check-in points. CA is the basic spatial unit for predicting the potential area containing users’ next locations. Then, we use the LINE (Large-scale Information Network Embedding) to obtain the representation vector of each CA. Finally, we apply BiLSTM-CNN (Bidirectional Long Short-Term Memory-Convolutional Neural Network) for location prediction. The results show that the proposed ensemble model outperforms the single LSTM or CNN model. In the case study that identifies 100 CAs out of Weibo check-ins collected in Wuhan, China, the Top-5 predicted areas containing next locations amount to an 80% accuracy. The high accuracy is of great value for recommendation and prediction on areal unit. Numéro de notice : A2021-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808896 date de publication en ligne : 26/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808896 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97324
in International journal of geographical information science IJGIS > vol 35 n° 4 (April 2021) . - pp 639 - 660[article]Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
![]()
[article]
Titre : Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework Type de document : Article/Communication Auteurs : Peyman Azimpour, Auteur ; Tahereh Bahraini, Auteur ; Hadi Sadoghi Yazdi, Auteur Année de publication : 2021 Article en page(s) : pp 3266 - 3276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] caractéristique spatio-spectrale
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] distribution de Gauss
[Termes descripteurs IGN] factorisation de matrice non-négative
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] filtre de Gauss
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] Matlab
[Termes descripteurs IGN] processeur graphique
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] variableRésumé : (auteur) The hyperspectral-image (HSI) noise-reduction step is a very significant preprocessing phase of data-quality enhancement. It has been attracting immense research attention in the remote sensing and image processing domains. Many methods have been developed for HSI restoration, the goal of which is to remove noise from the whole HSI cube simultaneously without considering the spectral–spatial similarity. When a noise-removal algorithm is used globally to the entire data set, it would not eliminate all levels of noise, effectively. Furthermore, most of the existing methods remove independent and identically distributed (i.i.d.) Gaussian noise. The real scenarios are much more complicated than this assumption. The complexity created by natural noise that has a non-i.i.d. structure leads to inefficient methods containing underestimation and invalid performance. In this article, we calculated the spatial–spectral similarity criteria by defining a set of clustering-based latent variables (CLVs) in a Bayesian framework to improve the robustness. These criteria can be extracted using the clustering operators. Then, by applying the CLV to the variational Bayesian model, we investigated a new low-rank matrix factorization denoising approach based on the proposed clustering-based latent variable (CLV-LRMF) to remove noise with the non-i.i.d. mixture of Gaussian structures. Finally, we switched to the GPU for MATLAB implementation to reduce the runtime. The experimental results show that the performance has been improved by applying the proposed CLV and demonstrate the effectiveness of the proposed CLV-LRMF over other state-of-the-art methods. Numéro de notice : A2021-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939512 date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.1109/TGRS.2019.2939512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97396
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3266 - 3276[article]Utilizing urban geospatial data to understand heritage attractiveness in Amsterdam / Sevim Sezi Karayazi in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
![]()
[article]
Titre : Utilizing urban geospatial data to understand heritage attractiveness in Amsterdam Type de document : Article/Communication Auteurs : Sevim Sezi Karayazi, Auteur ; Gamze Dane, Auteur ; Bauke de Vries, Auteur Année de publication : 2021 Article en page(s) : n° 198 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Amsterdam
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] attractivité (aménagement)
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] gestion durable
[Termes descripteurs IGN] image Flickr
[Termes descripteurs IGN] musée
[Termes descripteurs IGN] patrimoine
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] tourismeRésumé : (auteur) Touristic cities are home to historical landmarks and irreplaceable urban heritages. Although tourism brings financial advantages, mass tourism creates pressure on historical cities. Therefore, “attractiveness” is one of the key elements to explain tourism dynamics. User-contributed and geospatial data provide an evidence-based understanding of people’s responses to these places. In this article, the combination of multisource information about national monuments, supporting products (i.e., attractions, museums), and geospatial data are utilized to understand attractive heritage locations and the factors that make them attractive. We retrieved geotagged photographs from the Flickr API, then employed density-based spatial clustering of applications with noise (DBSCAN) algorithm to find clusters. Then combined the clusters with Amsterdam heritage data and processed the combined data with ordinary least square (OLS) and geographically weighted regression (GWR) to identify heritage attractiveness and relevance of supporting products in Amsterdam. The results show that understanding the attractiveness of heritages according to their types and supporting products in the surrounding built environment provides insights to increase unattractive heritages’ attractiveness. That may help diminish the burden of tourism in overly visited locations. The combination of less attractive heritage with strong influential supporting products could pave the way for more sustainable tourism in Amsterdam. Numéro de notice : A2021-304 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10040198 date de publication en ligne : 25/03/2021 En ligne : https://doi.org/10.3390/ijgi10040198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97424
in ISPRS International journal of geo-information > vol 10 n° 4 (April 2021) . - n° 198[article]A heuristic approach to the generalization of complex building groups in urban villages / Wenhao Yu in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : A heuristic approach to the generalization of complex building groups in urban villages Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Qi Zhou, Auteur ; Rong Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 155 - 179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] représentation multiple
[Termes descripteurs IGN] triangulation de Delaunay
[Termes descripteurs IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The generalization of building footprints acts as the basis of multi-scale mapping. Most of the previous studies focus on the generalization of regular building clusters within a wide neighbourhood, but only few has concerned about the generalization of cluttered building clusters within the narrow space such as urban village. The buildings in urban villages show special characteristics in terms of individual properties and group properties, and thus their map generalization processes are often limited. This study proposes a framework to generalize the cluttered building clusters that allows for multi-scale mapping. It first adopts a heuristic method to group adjacent buildings based on the Delaunay triangulation model and then aggregates and simplifies each building group separately. Given that the aggregated buildings in urban villages often show cluttered alignments, our method further trims the jagged boundaries of building footprints by extracting the gap space between neighbouring buildings from the Delaunay triangulation model. Numéro de notice : A2021-084 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.159046 date de publication en ligne : 25/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1590463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96843
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 155 - 179[article]Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkDynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs / Yang Bai in Computers & geosciences, vol 146 (January 2021)
PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkEmpirical assessment of road network resilience in natural hazards using crowdsourced traffic data / Yi Qiang in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkGroup diagrams for representing trajectories / Maike Buchin in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkSTME: An effective method for discovering spatiotemporal multi‐type clusters containing events with different densities / Chao Wang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkA comparison of neighbourhood relations based on ordinary Delaunay diagrams and area Delaunay diagrams: an application to define the neighbourhood relations of buildings / Hiroyuki Usui in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkA multi-scale representation model of polyline based on head/tail breaks / Pengcheng Liu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkCoupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones / Xun Liang in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkA framework for group converging pattern mining using spatiotemporal trajectories / Bin Zhao in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
PermalinkNetwork-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkAn overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering / Xiaojing Wu in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkComprehensive decision-strategy space exploration for efficient territorial planning strategies / Olivier Billaud in Computers, Environment and Urban Systems, vol 83 (September 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkPrecise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkExploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique / Hao Li in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkReestimating a minimum acceptable geocoding hit rate for conducting a spatial analysis / Alvaro Briz-Redon in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
PermalinkUnsupervised semantic and instance segmentation of forest point clouds / Di Wang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkExtracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation / Shuhui Gong in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
PermalinkHyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance / Bing Tu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
PermalinkUsing GIS for disease mapping and clustering in Jeddah, Saudi Arabia / Abdulkader Murad in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkA framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
PermalinkApplication of digital image processing in automated analysis of insect leaf mines / Yee Man Theodora Cho (2020)
PermalinkPotential of UAV photogrammetry for characterization of forest canopy structure in uneven-aged mixed conifer–broadleaf forests / Sadeepa Jayathunga in International Journal of Remote Sensing IJRS, vol 41 n° 1 (01 - 08 janvier 2020)
PermalinkUnsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters / Ting Mao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
PermalinkA reliable traffic prediction approach for bike‐sharing system by exploiting rich information with temporal link prediction strategy / Yan Zhou in Transactions in GIS, Vol 23 n° 5 (October 2019)
PermalinkSpatially constrained regionalization with multilayer perceptron / Michael Govorov in Transactions in GIS, Vol 23 n° 5 (October 2019)
PermalinkGenetic diversity and structure of Silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range / Maria Teodosiu in Annals of forest research, vol 62 n° 2 (June - December 2019)
PermalinkPiecewise-planar approximation of large 3D data as graph-structured optimization / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5 (May 2019)
PermalinkExploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN / Xinyi Liu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)
PermalinkA natural language processing and geospatial clustering framework for harvesting local place names from geotagged housing advertisements / Yingjie Hu in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
PermalinkUsing LiDAR to develop high-resolution reference models of forest structure and spatial pattern / Haley L. Wiggins in Forest ecology and management, vol 434 (28 February 2019)
PermalinkDetecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization / Si Song in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)
PermalinkIntegration of lidar data and GIS data for point cloud semantic enrichment at the point level / Harith Aljumaily in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
PermalinkSimultaneous chain-forming and generalization of road networks / Susanne Wenzel in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
PermalinkOn the spatial distribution of buildings for map generalization / Zhiwei Wei in Cartography and Geographic Information Science, Vol 45 n° 6 (November 2018)
PermalinkSpatial association between regionalizations using the information-theoretical V-measure / Jakub Nowosad in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)
PermalinkScalable individual tree delineation in 3D point clouds / Jinhu Wang in Photogrammetric record, vol 33 n° 163 (September 2018)
PermalinkUsing interactions and dynamics for mining groups of moving objects from trajectory data / Corrado Loglisci in International journal of geographical information science IJGIS, vol 32 n° 7-8 (July - August 2018)
PermalinkA simple line clustering method for spatial analysis with origin-destination data and its application to bike-sharing movement data / Biao He in ISPRS International journal of geo-information, vol 7 n° 6 (June 2018)
PermalinkA geometric correspondence feature based-mismatch removal in vision based-mapping and navigation / Zeyu Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 10 (October 2017)
PermalinkAutomatic mapping of forest stands based on three-dimensional point clouds derived from terrestrial laser-scanning / Tim Ritter in Forests, vol 8 n° 8 (August 2017)
PermalinkA novel semisupervised active-learning algorithm for hyperspectral image classification / Zengmao Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
PermalinkConstrained clustering by constraint programming / Thi-Bich-Hanh Dao in Artificial intelligence, vol 244 (March 2017)
PermalinkPermalinkAirborne lidar estimation of aboveground forest biomass in the absence of field inventory / António Ferraz in Remote sensing, vol 8 n° 8 (August 2016)
![]()
PermalinkAutomatic extraction of road networks from GPS traces / Jia Qiu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 8 (August 2016)
PermalinkLand-surface segmentation as a method to create strata for spatial sampling and its potential for digital soil mapping / L. Drăguț in International journal of geographical information science IJGIS, vol 30 n° 7- 8 (July - August 2016)
PermalinkClassified and clustered data constellation: An efficient approach of 3D urban data management / Suhaibah Azri in ISPRS Journal of photogrammetry and remote sensing, vol 113 (March 2016)
PermalinkUniformity-based superpixel segmentation of hyperspectral images / Arun M. Saranathan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)
PermalinkContributions à la segmentation non supervisée d'images hyperspectrales : trois approches algébriques et géométriques / Saadallah El Asmar (2016)
PermalinkEuropean handbook of crowdsourced geographic information, ch. 12. Gaining knowledge from georeferenced social media data with visual analytics / Gennady Andrienko (2016)
![]()
PermalinkVegetation classification and biogeography of European floodplain forests and alder carrs / Jan Douda in Applied Vegetation Science, vol 19 n° 1 (January 2016)
PermalinkAPFiLoc: An Infrastructure-Free Indoor Localization method fusing smartphone inertial sensors, landmarks and map information / Jianga Shang in Sensors, vol 15 n° 10 (October 2015)
PermalinkPolygonal clustering analysis using multilevel graph-partition / Wanyi Wang in Transactions in GIS, vol 19 n° 5 (October 2015)
PermalinkCharacterizing the heterogeneity of the OpenStreetMap data and community / Ding Ma in ISPRS International journal of geo-information, vol 4 n°2 (June 2015)
PermalinkPoints of interest recommendation from GPS trajectories / Yaqiong Liu in International journal of geographical information science IJGIS, vol 29 n° 6 (June 2015)
PermalinkRegionalization of youth and adolescent weight metrics for the continental United States using contiguity-constrained clustering and partitioning / Samuel Adu-Prah in Cartographica, vol 50 n° 2 (Summer 2015)
PermalinkCo-clustering geo-referenced time series: exploring spatio-temporal patterns in Dutch temperature data / Xiaojing Wu in International journal of geographical information science IJGIS, vol 29 n° 4 (April 2015)
PermalinkMapping large spatial flow data with hierarchical clustering / Xi Zhu in Transactions in GIS, vol 18 n° 3 (June 2014)
PermalinkCombining Geo-SOM and hierarchical clustering to explore geospatial data / Chen-Chieh Feng in Transactions in GIS, vol 18 n° 1 (February 2014)
PermalinkAbstracting geographic information in a data rich world, ch. 3. Modelling geographic relationships in automated environments / Guillaume Touya (2014)
PermalinkScale-specific automated line simplification by vertex clustering on a hexagonal tessellation / Paulo Raposo in Cartography and Geographic Information Science, vol 40 n° 5 (November 2013)
PermalinkFootprint generation using fuzzy-neighborhood clustering / Jonathon K. Parker in Geoinformatica, vol 17 n° 2 (April 2013)
PermalinkSpatio-temporal polygonal clustering with space and time as first-class citizens / Deepti Joshi in Geoinformatica, vol 17 n° 2 (April 2013)
PermalinkTrajectories of moving objects on a network: detection of similarities, visualization of relations, and classification of trajectories / Yukio Sadahiro in Transactions in GIS, vol 17 n° 1 (February 2013)
PermalinkSemisupervised learning of hyperspectral data with unknown land-cover classes / G. Jun in IEEE Transactions on geoscience and remote sensing, vol 51 n° 1 Tome 1 (January 2013)
PermalinkCluster recognition in spatial-temporal sequences: the case of forest fires / C. Vega Orozco in Geoinformatica, vol 15 n° 4 (October 2012)
PermalinkSemisupervised classification of remote sensing images with active queries / Jordi Munoz-Mari in IEEE Transactions on geoscience and remote sensing, vol 50 n° 10 Tome 1 (October 2012)
PermalinkHyperspectral band clustering and band selection for urban land cover classification / H. Su in Geocarto international, vol 27 n° 5 (August 2012)
PermalinkMemory-based cluster sampling for remote sensing image classification / Michele Volpi in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
PermalinkSatellite image time series analysis under time warping / F. Petitjean in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)
PermalinkDiscovering spatial patterns in origin-destination mobility data / D. Guo in Transactions in GIS, vol 16 n° 3 (June 2012)
PermalinkEfficient parallel algorithm for pixel classification in remote sensing imagery / U. Maulik in Geoinformatica, vol 16 n° 2 (April 2012)
PermalinkFuzzy analysis for modeling regional delineation and development: The case of the Sardinian mining geopark / G. Manca in Transactions in GIS, vol 16 n° 1 (February 2012)
PermalinkClustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm / O. Sjahputera in IEEE Transactions on geoscience and remote sensing, vol 49 n° 12 Tome 1 (December 2011)
PermalinkComputational method for the point cluster analysis on networks / K. Sugihara in Geoinformatica, vol 15 n° 1 (January 2011)
PermalinkA framework for regional association rule mining and scoping in spatial datasets / W. Ding in Geoinformatica, vol 15 n° 1 (January 2011)
PermalinkUsing clustering methods in geospatial information systems / X. Wang in Geomatica, vol 64 n° 3 (September 2010)
PermalinkSegmentation and reconstruction of polyhedral building roofs from aerial lidar points clouds / A. Sampath in IEEE Transactions on geoscience and remote sensing, vol 48 n° 3 Tome 2 (March 2010)
PermalinkAutomatic cluster identification for environnemental applications using the self-organizing maps and a new genetic algorithm / T. Oyana in Geocarto international, vol 25 n° 1 (February 2010)
PermalinkUsing building permits to monitor disaster recovery: a spatio-temporal case study of coastal Mississipi following hurricane Katrina / J. Stevenson in Cartography and Geographic Information Science, vol 37 n° 1 (January 2010)
PermalinkResearch on urban influence domains in China / S. Liang in International journal of geographical information science IJGIS, vol 23 n°11-12 (november 2009)
PermalinkStylistic diversity in European state 1: 50 000 topographic maps / Alexander J. Kent in Cartographic journal (the), vol 46 n° 3 (August 2009)
PermalinkOptimizing Support Vector Machine learning for semi-arid vegetation mapping by using clustering analysis / L. Su in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 4 (July - August 2009)
PermalinkPan-European forest/non forest mapping with Landsat ETM+ and Corine Land Cover 2000 data / A. Pekkarinen in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 2 (March - April 2009)
PermalinkAn automated method of scale selection and sheet configuration for multiple sheet census maps with Insets / W.G. Thompson in Cartography and Geographic Information Science, vol 36 n° 1 (January 2009)
PermalinkDetection of multi-scale clusters in network space / S. Shiode in International journal of geographical information science IJGIS, vol 23 n° 1-2 (january 2009)
PermalinkExtending marine GIS capabilities: 3D representation of fish aggregations using Delaunay tetrahedralisation and Alpha shapes / V. Carette in Geomatica, vol 62 n° 4 (December 2008)
PermalinkAn assessment of the effects of cell size on AGNPS modeling of watershed runoff / S.S. Wu in Cartography and Geographic Information Science, vol 35 n° 4 (October 2008)
PermalinkClassification fonctionnelle des Public Participation GIS / A. Turkucu in Revue internationale de géomatique, vol 18 n° 4 (septembre – novembre 2008)
PermalinkLand cover classification of the North China Plain using MODIS-EVI time series / Z. Xia in ISPRS Journal of photogrammetry and remote sensing, vol 63 n° 4 (July - August 2008)
PermalinkPermalinkSupporting the process of exploring and interpreting space-time multivariate patterns: the visual inquiry toolkit / J. Chen in Cartography and Geographic Information Science, vol 35 n° 1 (January 2008)
PermalinkSpatial aspects of MRSA epidemiology: a case study using stochastic simulation, kernel estimation and SaTScan / Lucy Bastin in International journal of geographical information science IJGIS, vol 21 n° 6-7 (july 2007)
PermalinkEvaluating the uncertainty caused by Post Office Box addresses in environmental health studies: A restricted Monte Carlo approach / X. Shi in International journal of geographical information science IJGIS, vol 21 n° 3-4 (march - april 2007)
PermalinkNET-DBSCAN: clustering the nodes of a dynamic linear network / Emmanuel Stefanakis in International journal of geographical information science IJGIS, vol 21 n° 3-4 (march - april 2007)
PermalinkDEM resolution dependencies of terrain attributes across a landscape / Y. Deng in International journal of geographical information science IJGIS, vol 21 n° 1-2 (january 2007)
PermalinkPermalinkFast cluster polygonization and its applications in data-rich environments / I. Lee in Geoinformatica, vol 10 n° 4 (December 2006)
PermalinkAgent-based modelling of shifting cultivation field patterns, Vietnam / M.R. Jepsen in International journal of geographical information science IJGIS, vol 20 n° 9 (october 2006)
PermalinkPopulation landscape: a geometric approach to studying spatial patterns of the US urban hierarchy / L. Mu in International journal of geographical information science IJGIS, vol 20 n° 6 (july 2006)
PermalinkSegmentation of airborne laser scanning data using a slope adaptative neighbourhood / S. Filin in ISPRS Journal of photogrammetry and remote sensing, vol 60 n° 2 (April 2006)
PermalinkCAp 2006, 8e conférence francophone sur l'apprentissage automatique, 22 - 24 mai 2006, Trégastel, France / Laurent Miclet (2006)
PermalinkPermalinkReconstructing spatiotemporal trajectories from sparse data / P. Partsinevelos in ISPRS Journal of photogrammetry and remote sensing, vol 60 n° 1 (December 2005 - March 2006)
PermalinkRemote sensing image thresholding methods for determining landslide activity / P.L. Rosin in International Journal of Remote Sensing IJRS, vol 26 n° 6 (March 2005)
PermalinkSatellite image classification using genetically guided fuzzy clustering with spatial information / S. Bandyopadhyay in International Journal of Remote Sensing IJRS, vol 26 n° 3 (February 2005)
PermalinkFiltering airborne Laser scanner data: a wavelet-based clustering method / T. Thuy in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 11 (November 2004)
PermalinkClustering with obstacles for geographical data mining / V. Estivill-Castro in ISPRS Journal of photogrammetry and remote sensing, vol 59 n° 1-2 (August 2004 - April 2005)
PermalinkA land cover classification product over France at 1 km resolution using Spot4-Vegetation data / K.S. Han in Remote sensing of environment, vol 92 n° 1 (15 July 2004)
PermalinkIntra-urban location and clustering of road accidents using GIS: a Belgian example / T. Steenberghen in International journal of geographical information science IJGIS, vol 18 n° 2 (march 2004)
PermalinkApproaches to fractional land cover and continuous field mapping: a comparative assessment over the BOREAS [BOReal Ecosystem Atmosphere Study] study region / R. Fernandes in Remote sensing of environment, vol 89 n° 2 (30/01/2004)
PermalinkEvaluation of speckle noise MAP filtering algorithms applied to SAR images / F.N.S. Medeiros in International Journal of Remote Sensing IJRS, vol 24 n° 24 (December 2003)
PermalinkA comparison of vector and raster GIS methods for calculating landscape metrics used in environmental assessments / T.G. Wade in Photogrammetric Engineering & Remote Sensing, PERS, vol 69 n° 12 (December 2003)
PermalinkPrincipal-components-based display strategy for spectral imagery / J.S. Tyo in IEEE Transactions on geoscience and remote sensing, vol 41 n° 3 (March 2003)
PermalinkLandscape dynamics of the spread of sudden oak death / M. Kelly in Photogrammetric Engineering & Remote Sensing, PERS, vol 68 n° 10 (October 2002)
PermalinkLarge-area land-cover mapping through scene-based classification compositing / B. Guindon in Photogrammetric Engineering & Remote Sensing, PERS, vol 68 n° 6 (June 2002)
PermalinkA synergic automatic clustering technique (syneract) for multispectral image analysis / K.Y. Huang in Photogrammetric Engineering & Remote Sensing, PERS, vol 68 n° 1 (January 2002)
PermalinkDetection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking / F. Dell'acqua in IEEE Transactions on geoscience and remote sensing, vol 39 n° 10 (October 2001)
PermalinkClustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery / C.C. Funk in IEEE Transactions on geoscience and remote sensing, vol 39 n° 7 (July 2001)
PermalinkPermalinkSDH 98 Proceedings 8th international symposium on spatial data handling, Vancouver, July 11 - 15, 1998 / Thomas K. Poiker (1998)
PermalinkNo fuzzy creep! A clustering algorithm for controlling arbitrary node movement / Francis Harvey (07/04/1997)
![]()
PermalinkPermalinkKlassifizierung von multispektralen Bildern unter Verwendung der Clusterformen im Merkmalsraum / M. Zahn (1996)
Permalink