Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée > analyse factorielle > analyse de groupement
analyse de groupementSynonyme(s)analyse par segmentation analyse des groupesVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery / C.C. Funk in IEEE Transactions on geoscience and remote sensing, vol 39 n° 7 (July 2001)
[article]
Titre : Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery Type de document : Article/Communication Auteurs : C.C. Funk, Auteur ; J. Theiler, Auteur ; C.C. Borel, Auteur ; D.A. Roberts, Auteur Année de publication : 2001 Article en page(s) : pp 1410 - 1420 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image thermiqueRésumé : (Auteur) The use of matched filters on hyperspectral data has made it possible to detect faint signatures. This study uses a modified k-means clustering to improve matched filter performance. Several simple bivariate cases are examined in detail, and the interaction of filtering and partitioning is discussed. The authors show that clustering can reduce within-class variance and group pixels with similar correlation structures. Both of these features improve filter performance. The traditional k-means algorithm is modified to work with a sample of the image at each iteration and is tested against two hyperspectral datasets. A new “extreme” centroid initialization technique is introduced and shown to speed convergence. Several matched filtering formulations (the simple matched filter, the clutter matched filter, and the saturated matched filter) are compared for a variety of number of classes and synthetic hyperspectral images. The performance of the various clutter matched filter formulations is similar, all are about an order of magnitude better than the simple matched filter. Clustering is found to improve the performance of all matched filter formulations by a factor of two to five. Clustering in conjunction with clutter matched filtering can improve fifty-fold over the simple case, enabling very weak signals to be detected in hyperspectral images. Numéro de notice : A2001-200 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=21894
in IEEE Transactions on geoscience and remote sensing > vol 39 n° 7 (July 2001) . - pp 1410 - 1420[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-01071 RAB Revue Centre de documentation En réserve 3L Disponible
Titre : Segmentierung und Interpretation digitaler Bilder mit Markoff-Zufallsfeldern Titre original : [Segmentation and interpretation of digital images using Markov random fields] Type de document : Thèse/HDR Auteurs : J. Klonowski, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 1999 Collection : DGK - C Sous-collection : Dissertationen num. 492 Importance : 91 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-3-7696-9532-8 Note générale : Bibliographie Langues : Allemand (ger) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] distribution de Gibbs
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] théorème de Bayes
[Termes descripteurs IGN] varianceRésumé : (Auteur)This thesis defines and solves the problem of the interpretation of digital images by labeling processes on two levels based on Markov random fields. Under the assumption that the objects to be identified in the image differ by their textures, pixels are labeled at the low level according to their affiliation to classes of textures. Clusters of pixels with identical labels are forming regions. They are labeled at the high level of the image analysis to obtain the meaning of the objects. Uncertainties are considered by variances for the description of textures and objects as well as by the probabilistic approach for the labeling.
The textures at the low level are represented by the Gibbs distribution of the Markov random field for the gray values. Prior information on the labels concerning the textures is introduced by the Gibbs distribution of the Markov random field of the labels. Application of Bayes' theorem joins the two densities to the posterior distri-bution. Its maximization at every pixel yields the labels for the textures. Also on the basis of Markov random fields a description for the existing and the expected objects is obtained at the high level of image analysis. Prior information on the unknown object labels consists of the frequency of the occurence of objects and their neighborhood relations. Maximization of the posterior density leads to the labels. Uncertain interpretations of regions are found by posterior odds for hypotheses. The label "unknown" is attributed to them.
The quality of the interpretation is mainly influenced by the segmentation at the low level. Therefore an in-teraction between the two levels on the basis of posterior odds has been realized. The percentage of area of the regions labeled "unknown" is used as an indicator for improving the segmentation, which leads to a better result for the interpretation.
The texture classification is first investigated by generated data for a/ better judgement of the influences of the choice of the parameters for the distributions. The experience gained is used in the segmentation of real multispectral aerial photographs. Tests of a color transformation and an image pyramid of the image data with respect to the quality of the symbolic description of the image are following. Finally the interaction between the two interpretation levels is tested on aerial multispectral photographs of urban areas.Numéro de notice : 28003 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=63350 Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 28003-01 35.20 Livre Centre de documentation Télédétection Disponible 28003-02 35.20 Livre Centre de documentation Télédétection Disponible SDH 98 Proceedings 8th international symposium on spatial data handling, Vancouver, July 11 - 15, 1998 / Thomas K. Poiker (1998)
Titre : SDH 98 Proceedings 8th international symposium on spatial data handling, Vancouver, July 11 - 15, 1998 Type de document : Actes de congrès Auteurs : Thomas K. Poiker, Editeur scientifique ; Nicholas Chrisman, Editeur scientifique Congrès : SDH 1998, 8th international symposium on spatial data handling (juillet 2000; Vancouver, Canada), Auteur Editeur : International Geographical Union IGU Année de publication : 1998 Importance : 768 p. Format : 16 x 24 cm Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] base de données multi-représentation
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] généralisation cartographique
[Termes descripteurs IGN] géomètrie algorithmique
[Termes descripteurs IGN] géovisualisation
[Termes descripteurs IGN] interopérabilité
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] modélisation spatiale
[Termes descripteurs IGN] programmation par contraintes
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] représentation multiple
[Termes descripteurs IGN] requête (informatique)
[Termes descripteurs IGN] Triangulated Irregular NetworkNuméro de notice : 17210 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Actes Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81332 ContientRéservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 17210-01 CG1998 Livre Centre de documentation En réserve 2S (M-103) Disponible 17210-02 K325 Livre COGIT Dépôt en unité Exclu du prêt No fuzzy creep! A clustering algorithm for controlling arbitrary node movement / Francis Harvey (07/04/1997)
![]()
![]()
contenu dans 1997 ACSM-ASPRS annual convention, Volume 5. Auto-Carto 13 / American society for photogrammetry and remote sensing (1997)
Titre : No fuzzy creep! A clustering algorithm for controlling arbitrary node movement Type de document : Article/Communication Auteurs : Francis Harvey, Auteur ; François Vauglin , Auteur
Congrès : Auto-Carto 1997, 13th international symposium on computer-assisted cartography (7 - 10 avril 1997; Seattle, Washington - Etats-Unis), Auteur Editeur : Bethesda [Maryland - Etats-Unis] : American Society for Photogrammetry and Remote Sensing ASPRS Année de publication : 07/04/1997 Importance : pp 317 - 326 Format : 21 x 30 cm Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] géomètrie algorithmique
[Termes descripteurs IGN] noeudRésumé : (Auteur) A perennial problem in vector overlay is fuzzy creep. Commercial vector overlay algorithms resolve near intersections of lines employing arbitrary node movement to align two chains at nodes selected randomly in the area of an epsilon band. While this solution is effective in reducing the number of sliver polygons, it introduces distortion. In some situations this distortion may be tolerable, but in others it may produce positional errors that are unacceptable for the cartographic or analytical purpose. Our research aims to provide an extension of overlay processing that provides a solution for GIS uses that require more exact control over node movement. The key to this is a robust, non-distorting cluster analysis. The cluster algorithm we present fulfills two goals: 1) it selects nodes based on an nearness heuristic, 2) it allows the user to fix the position of one data set's nodes and moves the other data set's nodes to match these position. In this paper we review existing cluster algorithms from the computational geometry and analytical cartography literature, evaluating their heuristics in terms of the potential to avoid fuzzy creep. Grouping the algorithms into a bit-map and fuzzy-detection types, we discuss the advantages and disadvantages of each approach for controlled near intersection detection. Based on the results of this analysis, we present a algorithm for non-distortive geometric match processing, the basis for our work on geometric match processing. Numéro de notice : C1997-068 Affiliation des auteurs : IGN+Ext (1940-2011) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliés En ligne : https://cartogis.org/docs/proceedings/archive/auto-carto-13/pdf/no-fuzzy-creep-a [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=64340 Documents numériques
en open access
No-fuzzy-creep-a-clustering-algorithm ... - pdf éditeurAdobe Acrobat PDF
contenu dans ICC 97 proceedings 18th ICA/ACI International Cartographic Conference, 3. Volume 3 / L. Ottoson (1997)
Titre : Structuration du bâti pour la généralisation Type de document : Article/Communication Auteurs : Nicolas Regnauld , Auteur
Congrès : ICC 1997, 18th international cartographic conference ICA (23 - 27 juin 1997; Stockholm, Suède), Commanditaire Editeur : Gävle : Swedish Cartographic Society Année de publication : 1997 Importance : pp 1395 - 1401 Note générale : bibliographie Langues : Français (fre) Descripteur : [Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] plateforme logicielle
[Vedettes matières IGN] GénéralisationNuméro de notice : C1997-044 Affiliation des auteurs : IGN (1940-2011) Thématique : GEOMATIQUE Nature : Communication Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85241 Documents numériques
en open access
Structuration du bâti pour la généralisationAdobe Acrobat PDFKlassifizierung von multispektralen Bildern unter Verwendung der Clusterformen im Merkmalsraum / M. Zahn (1996)
PermalinkMeasurement, characterization and classification for automated line feature generalization / Corinne Plazanet (27/02/1995)
PermalinkCluster analysis of pine crown foliage patterns aid identification of mountain pine beetle current-attack / P.A. Murtha in Photogrammetric Engineering & Remote Sensing, PERS, vol 55 n° 1 (january 1989)
PermalinkUsing cluster analysis to improve the selection of training statistics in classifying remotely sensed data / E. Chuvieco in Photogrammetric Engineering & Remote Sensing, PERS, vol 54 n° 9 (september 1988)
PermalinkAdaptive clustering algorithm / L. O'malley in Journal research and development, vol 29 n° 1 (01/01/1985)
Permalink