Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de sensibilité
analyse de sensibilité |
Documents disponibles dans cette catégorie (153)



Etendre la recherche sur niveau(x) vers le bas
Sediment yield estimation in GIS environment using RUSLE and SDR model in Southern Ethiopia / Dawit Kanito in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
![]()
[article]
Titre : Sediment yield estimation in GIS environment using RUSLE and SDR model in Southern Ethiopia Type de document : Article/Communication Auteurs : Dawit Kanito, Auteur ; Dawit Bedadi, Auteur ; Samuel Feyissa, Auteur Année de publication : 2023 Article en page(s) : n° 2167614 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de sensibilité
[Termes IGN] bassin hydrographique
[Termes IGN] Ethiopie
[Termes IGN] image Landsat
[Termes IGN] modèle RUSLE
[Termes IGN] précipitation
[Termes IGN] sédiment
[Termes IGN] système d'information géographiqueRésumé : (auteur) Soil erosion and sediment yields are the current limitations and future threats to agriculture, water resources and hydropower projects particularly in developing countries. Estimating the extent and comprehending the spatial distribution of hotspot area is crucial to implement evidence-based soil and water conservation (SWC) measures with limited resources. The study used RUSLE and SDR models in ArcGIS 10.8 environment. The RUSLE model was found to be highly sensitive to C factor followed by LS factor. The result indicated that the annual soil loss varies from 0 to 359.99 t ha−1 yr−1 with 22.31 t ha−1 yr−1 as a mean annual. Besides, the estimated sediment yield ranged from 0 to 42.5 t ha−1 yr−1 with a mean value of 12.02 t ha−1 yr−1. The finding revealed that the central west (SW_5) and northeast (SW_4) parts of the watershed yield higher sediment. The result also signified that about 52.9% of the eroded materials including soil and nutrients are transferred to the outlet. The outcome of our finding undoubtedly aids in the identification of hotspot areas for the adoption of appropriate SWC measures. Hence, adopting RUSLE and SDR for Gununo watershed and another watershed having similar biophysical and environmental factors is suggested. Numéro de notice : A2023-155 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475705.2023.2167614 Date de publication en ligne : 26/01/2023 En ligne : https://doi.org/10.1080/19475705.2023.2167614 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102841
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - n° 2167614[article]Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying / Marzieh Shabani in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
![]()
[article]
Titre : Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying Type de document : Article/Communication Auteurs : Marzieh Shabani, Auteur ; Zohreh Masoumi, Auteur ; Abolfazl Rezaei, Auteur Année de publication : 2022 Article en page(s) : pp 600 - 618 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] analyse spatiale
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] développement durable
[Termes IGN] eau souterraine
[Termes IGN] gestion de l'eau
[Termes IGN] Iran
[Termes IGN] processus de hiérarchisation analytiqueRésumé : (auteur) A precise map of the dispersion of the groundwater potential across each watershed can help decision-makers to exert optimal water management in each region. In this research, the potential of groundwater resources in both the Zanjanrood Catchment and the Tarom Region, located in the northwest of Iran, has been studied. Seven effective criteria including slope, land-use, drainage density, spring density, lithology, lineament density, and rainfall are considered. Criteria were first weighted using the Analytical Hierarchical Process (AHP) method and then overlaid by the Technique for Order Preferences by Similarity to Ideal (TOPSIS) model. Finally, the spatial zoning map of groundwater potential was obtained in four categories. A sensitivity analysis was performed to determine the influence of each criterion on the obtained map. The model was verified using both the spatial distribution of the high-discharged production wells and the geophysical-based geoelectric field surveys. The results indicate that the high-discharged wells (>40 l/s) in both regions are dispersed predominantly in the very good zone and, in several cases, in the good zone. Besides, the results from the two-dimensional models of resistivity and induced polarization of geoelectrical field survey are inappropriate agreement with those from the TOPSIS method. Notably, there is no suitable potential zone of groundwater in the surrounding highlands to be used in the future for drinking purposes since the highlands water supply is a strategic supply for drinking. The strategies employed in this study, the results of GIS modeling, and the geoelectrical analysis can be considered for sustainable development of similar arid and semi-arid areas since groundwater is considered as the main supplier of water in such regions. Numéro de notice : A2022-891 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2022.2069052 Date de publication en ligne : 10/05/2022 En ligne : https://doi.org/10.1080/10095020.2022.2069052 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102238
in Geo-spatial Information Science > vol 25 n° 4 (December 2022) . - pp 600 - 618[article]Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale / Shengwu Qin in Natural Hazards, vol 114 n° 3 (December 2022)
![]()
[article]
Titre : Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale Type de document : Article/Communication Auteurs : Shengwu Qin, Auteur ; Shuangshuang Qiao, Auteur ; Jingyu Yao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2709 - 2738 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] analyse de sensibilité
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] éboulement
[Termes IGN] hétérogénéité spatiale
[Termes IGN] prévention des risquesRésumé : (auteur) Susceptibility mapping is an effective means of preventing debris flow disasters. However, previous studies have failed to solve spatial heterogeneity well, especially at the regional scale. The main objective of this study is to solve the spatial heterogeneity of regional-scale debris flow susceptibility (DFS) mapping by establishing a geographic information system (GIS)-based processing framework. The framework was realized by integrating the determination factor (DFactor) model with machine learning models. The DFactor model established different combinations of evaluation factors in each local region and clarified the differing contributions of influencing factors to DFS. To test the feasibility of the framework, the support vector machine (SVM) and two-dimensional convolutional neural network (CNN) were integrated with the DFactor model (DFactor-SVM and DFactor-CNN) to evaluate DFS in Jilin Province, China. The individual models (SVM and CNN) were also used to map the DFS for comparison with the integrated models. For debris flow modeling, 868 debris flow samples were collected and randomly divided into two datasets: 70% of the samples were used for training and the result was used for verification. The results of the receiver operating characteristic curve showed that the integrated models performed better. The DFactor-CNN model had the highest predictive accuracy, followed by the DFactor-SVM, CNN and SVM models. In general, the GIS-based processing framework maximizes the contribution of the influencing factors to debris flows and enhances the prediction ability of models. Furthermore, it provides a reliable means to predict debris flows at the regional scale. Numéro de notice : A2022-854 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-022-05487-5 Date de publication en ligne : 06/08/2022 En ligne : https://doi.org/10.1007/s11069-022-05487-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102101
in Natural Hazards > vol 114 n° 3 (December 2022) . - pp 2709 - 2738[article]Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability / Benjamin T. Gutierrez in Earth and space science, vol 9 n° 11 (November 2022)
![]()
[article]
Titre : Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability Type de document : Article/Communication Auteurs : Benjamin T. Gutierrez, Auteur ; Sarah Zeigler, Auteur ; Erika Lentz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] changement climatique
[Termes IGN] géomorphologie
[Termes IGN] habitat animal
[Termes IGN] île
[Termes IGN] modèle de simulation
[Termes IGN] montée du niveau de la mer
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] planification côtière
[Termes IGN] réseau bayesien
[Termes IGN] submersion marine
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côteRésumé : (auteur) Evaluation of sea-level rise (SLR) impacts on coastal landforms and habitats is a persistent need for informing coastal planning and management, including policy decisions, particularly those that balance human interests and habitat protection throughout the coastal zone. Bayesian networks (BNs) are used to model barrier island change under different SLR scenarios that are relevant to management and policy decisions. BNs utilized here include a shoreline change model and two models of barrier island biogeomorphological evolution at different scales (50 and 5 m). These BNs were then linked to another BN to predict habitat availability for piping plovers (Charadrius melodus), a threatened shorebird reliant on beach habitats. We evaluated the performance of the two linked geomorphology BNs and further examined error rates by generating hindcasts of barrier island geomorphology and habitat availability for 2014 conditions. Geomorphology hindcasts revealed that model error declined with a greater number of known inputs, with error rates reaching 55% when multiple outputs were hindcast simultaneously. We also found that, although error in predictions of piping plover nest presence/absence increased when outputs from the geomorphology BNs were used as inputs in the piping plover habitat BN, the maximum error rate for piping plover habitat suitability in the fully-linked BNs was only 30%. Our findings suggest this approach may be useful for guiding scenario-based evaluations where known inputs can be used to constrain variables that produce higher uncertainty for morphological predictions. Overall, the approach demonstrates a way to assimilate data and model structures with uncertainty to produce forecasts to inform coastal planning and management. Numéro de notice : A2022-883 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1029/2022EA002286 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1029/2022EA002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102024
in Earth and space science > vol 9 n° 11 (November 2022) . - 24 p.[article]A model-based scenario analysis of the impact of forest management and environmental change on the understorey of temperate forests in Europe / Bingbin Wen in Forest ecology and management, vol 522 (October-15 2022)
![]()
[article]
Titre : A model-based scenario analysis of the impact of forest management and environmental change on the understorey of temperate forests in Europe Type de document : Article/Communication Auteurs : Bingbin Wen, Auteur ; Haben Blondeel, Auteur ; Dries Landuyt, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de sensibilité
[Termes IGN] azote
[Termes IGN] biodiversité
[Termes IGN] changement climatique
[Termes IGN] dynamique de la végétation
[Termes IGN] Europe centrale
[Termes IGN] forêt tempérée
[Termes IGN] gestion forestière durable
[Termes IGN] impact sur l'environnement
[Termes IGN] modèle de simulation
[Termes IGN] sous-étage
[Termes IGN] système d'aide à la décision
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) The temperate forest understorey is rich in terms of vascular plant diversity and plays a vital functional role. Given the sensitivity of this forest layer to forest management and global environmental change and the limited knowledge on its long-term dynamics, there is a need for decision support systems that can guide temperate forest managers to optimize their management in terms of understorey outcomes. In this study, using understorey resurvey data collected from across temperate Europe, we developed Generalized Additive Models (GAM) to predict four understorey properties based on forest management and environmental change data, and implemented this model in a web-based tool as a prototype understorey Decision Support System (DSS). Using seventy-two combined climate change, nitrogen(N) deposition and forest management scenarios, applied to two case study regions in Europe, we predicted temperate forest understorey biodiversity dynamics between 2020 and 2050. A sensitivity analysis subsequently allowed to quantify the relative importance of canopy opening, N deposition and climate change on understorey dynamics. Our study showed that, regardless of regions, understorey richness and the proportion of forest specialists generally decreased among most scenarios, but the proportion of woody species and the understorey vegetation total cover increased. Climate warming, N deposition, and increases in canopy openness all influenced understorey dynamics. Climate warming will shift composition towards a selection of forest generalists and woody species, but a less open canopy could mitigate this shift by increasing the proportion of forest specialists. The case studies also showed that these responses can be context-dependent, especially in terms of responses to N deposition. Numéro de notice : A2022-710 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120465 Date de publication en ligne : 19/08/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101587
in Forest ecology and management > vol 522 (October-15 2022) . - n° 120465[article]Assessing the impact of forest structure disturbances on the arboreal movement and energetics of orangutans : An agent-based modeling approach / Kirana Widyastuti in Frontiers in Ecology and Evolution, vol 2022 ([01/09/2022])
PermalinkA map matching-based method for electric vehicle charging station placement at directional road segment level / Zhoulin Yu in Sustainable Cities and Society, vol 84 (September 2022)
PermalinkCost distances and least cost paths respond differently to cost scenario variations: a sensitivity analysis of ecological connectivity modeling / Paul Savary in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
PermalinkAbout tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping / Samuele De petris in Forests, vol 13 n° 7 (July 2022)
PermalinkA comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia / Rofiat Bunmi Mudashiru in Natural Hazards, vol 112 n° 3 (July 2022)
PermalinkSimulation-driven 3D forest growth forecasting based on airborne topographic LiDAR data and shading / Štefan Kohek in International journal of applied Earth observation and geoinformation, vol 111 (July 2022)
PermalinkRisk assessment and prediction of forest health for effective geo-environmental planning and monitoring of mining affected forest area in hilltop region / Narayan Kayet in Geocarto international, vol 37 n° 11 ([15/06/2022])
PermalinkSelf-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization / Seda Şalap-Ayça in Transactions in GIS, vol 26 n° 4 (June 2022)
PermalinkTowards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkSpectral-spatial classification method for hyperspectral images using stacked sparse autoencoder suitable in limited labelled samples situation / Seyyed Ali Ahmadi in Geocarto international, vol 37 n° 7 ([15/04/2022])
Permalink