Descripteur
Termes descripteurs IGN > géomatique > base de données localisées > base de données spatiotemporelles
base de données spatiotemporelles |



Etendre la recherche sur niveau(x) vers le bas
A framework for group converging pattern mining using spatiotemporal trajectories / Bin Zhao in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
![]()
[article]
Titre : A framework for group converging pattern mining using spatiotemporal trajectories Type de document : Article/Communication Auteurs : Bin Zhao, Auteur ; Xintao Liu, Auteur ; Jinping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 745 - 776 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] convergence
[Termes descripteurs IGN] exploration de données géographiques
[Termes descripteurs IGN] jointure spatiale
[Termes descripteurs IGN] objet mobile
[Termes descripteurs IGN] reconnaissance de formes
[Termes descripteurs IGN] trajectoireRésumé : (Auteur) A group event such as human and traffic congestion can be very roughly divided into three stages: converging stage before congestion, gathered stage when congestion happens, and dispersing stage that congestion disappears. It is of great interest in modeling and identifying converging behaviors before gathered events actually happen, which helps to proactively predict and handle potential public incidents such as serious stampedes. However, most of existing literature put too much emphasis on the second stage, only a few of them is dedicated to the first stage. In this paper, we propose a novel group pattern, namely converging, which refers to a group of moving objects converging from different directions during a certain period before gathered. To discover efficiently such converging patterns, we develop a framework for converging pattern mining (CPM) by examining how moving objects form clusters and the process of the “cluster containment”. The framework consists of three phases: snapshot cluster discovery phase, cluster containment join phase, and converging detection phase. As cluster containment mining is the key step, we develop three algorithms to discover cluster containment matches: a containment-join-algorithm, called SSCCJ, by using spatial proximity; a signature tree-based cluster-containment-join-algorithm, called STCCJ, which takes advantage of the cluster containment relations and signature techniques to filter enormous unqualified candidates in an efficient and effective way; and third, to keep the advantages of the above algorithms while avoiding their flaws, we further propose a signature quad-tree based cluster-containment-join algorithm, called SQTCCJ, which can identify efficiently matches by considering cluster spatial proximity as well as containment relations simultaneously. To assess the proposed methods, we redefine two evaluation metrics based on the concept of “Precision and Recall” in the field of information retrieval and the characteristics of converging patterns. We also propose a new indicator for measuring the duration of the converging stage in a group event. Finally, the effectiveness of the CPM and the efficiency of the mining algorithms are evaluated using three types of trajectory datasets, and the results show that the SQTCCJ algorithm demonstrates a superior performance. Numéro de notice : A2020-494 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00404-z date de publication en ligne : 25/04/2020 En ligne : https://doi.org/10.1007/s10707-020-00404-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96114
in Geoinformatica [en ligne] > vol 24 n° 4 (October 2020) . - pp 745 - 776[article]Using OpenStreetMap data and machine learning to generate socio-economic indicators / Daniel Feldmeyer in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
![]()
[article]
Titre : Using OpenStreetMap data and machine learning to generate socio-economic indicators Type de document : Article/Communication Auteurs : Daniel Feldmeyer, Auteur ; Claude Meisch, Auteur ; Holger Sauter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre aléatoire
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] chômage
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] collectivité territoriale
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] inégalité
[Termes descripteurs IGN] limite administrative
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] OpenStreetMapRésumé : (auteur) Socio-economic indicators are key to understanding societal challenges. They disassemble complex phenomena to gain insights and deepen understanding. Specific subsets of indicators have been developed to describe sustainability, human development, vulnerability, risk, resilience and climate change adaptation. Nonetheless, insufficient quality and availability of data often limit their explanatory power. Spatial and temporal resolution are often not at a scale appropriate for monitoring. Socio-economic indicators are mostly provided by governmental institutions and are therefore limited to administrative boundaries. Furthermore, different methodological computation approaches for the same indicator impair comparability between countries and regions. OpenStreetMap (OSM) provides an unparalleled standardized global database with a high spatiotemporal resolution. Surprisingly, the potential of OSM seems largely unexplored in this context. In this study, we used machine learning to predict four exemplary socio-economic indicators for municipalities based on OSM. By comparing the predictive power of neural networks to statistical regression models, we evaluated the unhinged resources of OSM for indicator development. OSM provides prospects for monitoring across administrative boundaries, interdisciplinary topics, and semi-quantitative factors like social cohesion. Further research is still required to, for example, determine the impact of regional and international differences in user contributions on the outputs. Nonetheless, this database can provide meaningful insight into otherwise unknown spatial differences in social, environmental or economic inequalities. Numéro de notice : A2020-663 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090498 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.3390/ijgi9090498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96139
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - 16 p.[article]Long time-series remote sensing analysis of the periodic cycle evolution of the inlets and ebb-tidal delta of Xincun Lagoon, Hainan Island, China / Huaguo Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
![]()
[article]
Titre : Long time-series remote sensing analysis of the periodic cycle evolution of the inlets and ebb-tidal delta of Xincun Lagoon, Hainan Island, China Type de document : Article/Communication Auteurs : Huaguo Zhang, Auteur ; Dongling Li, Auteur ; Juan Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 67 - 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] cyclone
[Termes descripteurs IGN] delta
[Termes descripteurs IGN] fond marin
[Termes descripteurs IGN] Hainan (Chine)
[Termes descripteurs IGN] lagune
[Termes descripteurs IGN] marée océanique
[Termes descripteurs IGN] marégraphie
[Termes descripteurs IGN] message d'alerte
[Termes descripteurs IGN] modèle conceptuel de données spatio-temporelles
[Termes descripteurs IGN] précipitation
[Termes descripteurs IGN] sable
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance du littoral
[Termes descripteurs IGN] variation temporelleRésumé : (auteur) Coastal lagoon–tidal inlet systems occur worldwide, and each has its own unique evolution characteristics in relation to its geographical location, sediment characteristics, and tidal current and ocean wave conditions. However, insufficient observation data means that it is often difficult to fully understand the long-term and short-term evolution of ebb-tidal deltas, and it is even more difficult to monitor and warn against their evolution. This study uses long time-series remote sensing data for the period 1962–2018 to investigate the evolution of an ebb-tidal delta in Xincun Lagoon, Hainan Island, China. Four shoal-sandbar breaching and tidal-inlet migration events were observed, and the corresponding periodic variation characteristics of the ebb-tidal delta were documented. A conceptual model for the periodic evolution of ebb-tidal deltas was also proposed. The results showed that the long-period (15–20 years) evolution was controlled by the effects of seabed friction and tidal-scale lagoon resonance, while the changes in the length of the east sand-spit could be used as a significant early warning indicator for shoal-sandbar breaching and tidal-inlet migration events. In addition, both types of event were jointly triggered by typhoon storm-surges and the accompanying heavy rainfall, strong winds, and strong waves. Thus, the periodic evolution process of the ebb-tidal delta in Xincun Lagoon was determined to be a systematic process that is either controlled or influenced by a series of interconnecting factors. Moreover, we concluded that it is both feasible and valuable to establish a monitoring and early warning framework of ebb-tidal deltas through the use of time-series remote sensing images. The results of this study can improve the existing understanding of the processes and driving factors of periodic shoal-sandbar breaching and tidal-inlet migration, and can also increase safety nourishment for coastal lagoon–tidal inlet systems. Numéro de notice : A2020-348 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.006 date de publication en ligne : 26/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.006 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95230
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 67 - 85[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 SL Revue Centre de documentation Revues en salle Disponible 081-2020073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam / Khanh Giang Le in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
![]()
[article]
Titre : Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam Type de document : Article/Communication Auteurs : Khanh Giang Le, Auteur ; Pei Liu, Auteur ; Liang-Tay Lin, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] accident de la route
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] Hanoï
[Termes descripteurs IGN] indice de risque
[Termes descripteurs IGN] nuit
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] variation diurne
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) This study applied GIS-based statistical analytic techniques to investigate the influence of accident Severity Index (SI) on temporal-spatial patterns of accident hotspots related to the specific time intervals of day and seasons. Road Traffic Accident (RTA) data in 3 years (2015 − 2017) in Hanoi, Vietnam were used to analyze and test this approach. Firstly, the RTA data were divided into four seasons in accordance with Hanoi’s weather conditions and the time intervals such as the daytime, nighttime, or peak hours. Then, the Kernel Density Estimation (KDE) method was applied to analyze hotspots according to the time intervals and seasons. Finally, the results were presented by using the comap technique. This study considered both analyses with and without SI. The accident SI measures the seriousness of an accident. The approach method is to give higher weights to the more serious accidents, but not with the extremely high values calculated on a direct rate to the accident expenditures. The results showed that both analyses determined the relatively similar hotspots, but the rankings of some hotspots were quite different due to the integration of SI. It is better to take into account SI in determining RTA hotspots because the gained results are more precise and the rankings of hotspots are more accurate. From there, the traffic authorities can easily understand the causes behind each accident and provide reasonable solutions to solve the most dangerous hotspots in case of limited budget and resources appropriately. This is also the first study about this issue in Vietnam, so the contribution of the article will help the traffic authorities easily solve this problem not only in Hanoi but also in other cities. Numéro de notice : A2020-317 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2019.1683437 date de publication en ligne : 02/12/2019 En ligne : https://doi.org/10.1080/10095020.2019.1683437 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95176
in Geo-spatial Information Science > vol 23 n° 2 (June 2020) . - pp 153 - 164[article]Assessing public transit performance using real-time data: spatiotemporal patterns of bus operation delays in Columbus, Ohio, USA / Yongha Park in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)
![]()
[article]
Titre : Assessing public transit performance using real-time data: spatiotemporal patterns of bus operation delays in Columbus, Ohio, USA Type de document : Article/Communication Auteurs : Yongha Park, Auteur ; Jerry Mount, Auteur ; Luyu Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 367 - 392 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] COLOMBUS (USA)
[Termes descripteurs IGN] diffusion de données
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] interface web
[Termes descripteurs IGN] mobilité urbaine
[Termes descripteurs IGN] réseau de transport
[Termes descripteurs IGN] temps réel
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] transport publicRésumé : (auteur) Public transit vehicles such as buses operate within shared transportation networks subject to dynamic conditions and disruptions such as traffic congestion. The operational delays caused by these conditions can propagate downstream through scheduled transit routes, affecting system performance beyond the initial delay. This paper develops an approach to measuring and assessing vehicle delay propagation in public transit systems. We fuse data on scheduled bus service with real-time vehicle location data to measure the originating, cascading and recovery locations of delay events across space with respect to time. We integrate the resulting patterns to construct stop-specific delay propagation networks. We also analyze the spatiotemporal patterns of propagating delays using parameters such as 1) transit line-based network distance, 2) total propagating delay size, and 3) distance decay. We apply our methodology using publicly available schedule and real-time location data from the Central Ohio Transit Authority (COTA) public bus system in Columbus, Ohio, USA. We find that delay initiation is spatially and temporally uneven, concentrating on specific stops in downtown and specific suburban locations. Core stops play a critical role in propagating delays to a wide range of connected stops, eventually having a disproportional impact on the on-time performance of the bus system. Numéro de notice : A2020-030 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1608997 date de publication en ligne : 30/04/2019 En ligne : https://doi.org/10.1080/13658816.2019.1608997 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94485
in International journal of geographical information science IJGIS > vol 34 n° 2 (February 2020) . - pp 367 - 392[article]Object‐oriented tracking of thematic and spatial behaviors of urban heat islands / Rui Zhu in Transactions in GIS, Vol 24 n° 1 (February 2020)
PermalinkInteractive display of surnames distributions in historic and contemporary Great Britain / Justin Van Dijk in Journal of maps, vol 16 n° 1 ([02/01/2020])
PermalinkMulti‐temporal transport network models for accessibility studies / Diego Bogado Tomasiello in Transactions in GIS, vol 23 n° 2 (April 2019)
PermalinkDe l'agrandissement des exploitations agricoles à la transformation des paysages de bocage : analyse comparative des recompositions foncières et paysagères en Normandie / Thibault Preux (2019)
PermalinkUn modèle spatiotemporel sémantique pour la modélisation de mobilités en milieu urbain / Meihan Jin in Revue internationale de géomatique, vol 28 n° 3 (juillet - septembre 2018)
PermalinkThe influence of domain expertise on visual overviews of spatiotemporal data / Susanne Bleisch in International journal of cartography, vol 3 n° 2 (December 2017)
PermalinkThe geometry of space-time prisms with uncertain anchors / Bart Kuijpers in International journal of geographical information science IJGIS, vol 31 n° 9-10 (September - October 2017)
PermalinkActivity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? / Qunying Huang in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
PermalinkModeling spatiotemporal topological relationships between moving object trajectories along road networks based on region connection calculus / Linbing Ma in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
PermalinkSpace-time multiple regression model for grid-based population estimation in urban areas / Ko Ko Lwin in International journal of geographical information science IJGIS, vol 30 n° 7- 8 (July - August 2016)
Permalink