Descripteur
Termes IGN > télédétection > données satellite > données multitemporelles
données multitemporellesSynonyme(s)donnees multidatesVoir aussi |
Documents disponibles dans cette catégorie (104)



Etendre la recherche sur niveau(x) vers le bas
Detecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa / Shenelle Lottering in Geocarto international, vol 37 n° 6 (June 2022)
![]()
[article]
Titre : Detecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa Type de document : Article/Communication Auteurs : Shenelle Lottering, Auteur ; Paramu Mafongoyab, Auteur ; Romano Lottering, Auteur Année de publication : 2022 Article en page(s) : pp 1574 - 1586 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] cartographie thématique
[Termes IGN] données météorologiques
[Termes IGN] données multitemporelles
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Termes IGN] température au solRésumé : (auteur) Drought has become a more frequent phenomenon under changing climatic conditions, particularly in Sub Saharan Africa. This study tested the utility of a newly proposed Temperature-Vegetation Water Stress Index (T-VWSI) in detecting drought severity using Landsat data for the years 2008, 2012, 2016 and 2018. This index was created using both NDVI and LST to detect drought severity within the region. The results show that the year 2016 experienced the most severe levels of drought, with the northern areas of the uMsinga region being most severely affected. SPI was used to corroborate the findings of the T-VWSI index and also established that the year 2016 was the year of severe drought in uMsinga. The results of this study have illustrated the potential of the T-VWSI index in effectively mapping and detecting drought over large spatial areas. Numéro de notice : A2022-473 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1783580 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1783580 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100820
in Geocarto international > vol 37 n° 6 (June 2022) . - pp 1574 - 1586[article]Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 (June 2022)
![]()
[article]
Titre : Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery Type de document : Article/Communication Auteurs : Semiha Demirbaş Çağlayana, Auteur ; Ugur Murat Leloglu, Auteur ; Christian Ginzler, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1587 - 1606 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Arbutus unedo
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données multitemporelles
[Termes IGN] Erica (genre)
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt méditerranéenne
[Termes IGN] Genista (genre)
[Termes IGN] gestion forestière durable
[Termes IGN] image Sentinel-MSI
[Termes IGN] maquis
[Termes IGN] Olea europaea
[Termes IGN] TurquieRésumé : (auteur) Essential forest ecosystem services can be assessed by better understanding the diversity of vegetation, specifically those of Mediterranean region. A species level classification of maquis would be useful in understanding vegetation structure and dynamics, which would be an indicator of degradation or succession in the region. Although remote sensing was regularly used for classification in the region, maquis are simply represented as one to three categories based on density or height. To fill this gap, we test the capability of Sentinel-2 imagery, together with selected ancillary variables, for an accurate mapping of the dominant maquis formations. We applied Recursive Feature Selection procedure and used a Random Forest classifier. The algorithm is tested using ground truth collected from site and reached 78% and 93% overall accuracy at species level and physiognomic level, respectively. Our results suggest species level characterization of dominant maquis is possible with Sentinel-2 spatial resolution. Numéro de notice : A2022-475 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1783581 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1783581 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100822
in Geocarto international > vol 37 n° 6 (June 2022) . - pp 1587 - 1606[article]Towards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Towards the automated large-scale reconstruction of past road networks from historical maps Type de document : Article/Communication Auteurs : Johannes H. Uhl, Auteur ; Stefan Leyk, Auteur ; Yao-Yi Chiang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] analyse de sensibilité
[Termes IGN] carte ancienne
[Termes IGN] carte routière
[Termes IGN] carte topographique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données multitemporelles
[Termes IGN] Etats-Unis
[Termes IGN] extraction du réseau routier
[Termes IGN] histoire
[Termes IGN] paysage
[Termes IGN] réseau routier
[Termes IGN] transport routier
[Termes IGN] urbanisationRésumé : (auteur) Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi-temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map series to reconstruct past road networks, by integrating abundant, contemporary road network data and color information extracted from historical maps. Specifically, our method uses contemporary road segments as analytical units and extracts historical roads by inferring their existence in historical map series based on image processing and clustering techniques. We tested our method on over 300,000 road segments representing more than 50,000 km of the road network in the United States, extending across three study areas that cover 42 historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and showed that the extracted road network statistics are highly plausible over time, i.e., following general growth patterns. We demonstrated that contemporary geospatial data integrated with information extracted from historical map series open up new avenues for the quantitative analysis of long-term urbanization processes and landscape changes far beyond the era of operational remote sensing and digital cartography. Numéro de notice : A2022-243 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101794 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100182
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101794[article]Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds / Michael Kölle in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds Type de document : Article/Communication Auteurs : Michael Kölle, Auteur ; Volker Walter, Auteur ; Uwe Soergel, Auteur Année de publication : 2022 Article en page(s) : pp 259 - 266 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] orthoimage couleur
[Termes IGN] production participative
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] traitement de données localiséesRésumé : (auteur) The main bottleneck of machine learning systems, such as convolutional neural networks, is the availability of labeled training data. Hence, much effort (and thus cost) is caused by setting up proper training data sets. However, models trained on specific data sets often perform unsatisfactorily when used to derive predictions for another (yet related) data set. We aim to overcome this problem by employing active learning to iteratively adapt an existing classifier to another domain. Precisely, we are concerned with semantic segmentation of 3D point clouds of multiple epochs. We first establish a Random Forest classifier for the first epoch of our data set and adapt it for successful prediction to two more temporally disjoint point clouds of the same but extended area. The point clouds, which are part of the newly introduced Hessigheim 3D benchmark data set, incorporate different characteristics with respect to the acquisition date and sensor configuration. We demonstrate that our workflow for domain adaptation is designed in such a way that it i) offers the possibility to greatly reduce labeling effort compared to a passive learning baseline or to an active learning baseline trained from scratch, if the domain gap is small enough and ii) at least does not cause more expenses (compared to a newly initialized active learning loop), if the domain gap is severe. The latter is especially beneficial in scenarios where the similarity of two different domains is hard to assess. Numéro de notice : A2022-435 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-259-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-259-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100743
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 259 - 266[article]Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2022 Article en page(s) : pp 243 - 253 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] données multitemporelles
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The mapping and change detection of land cover and land use are essential for urban management. The aim of this study was to map and monitor the spatial and temporal change in urban land cover and land use in Davidson County, Tennessee in the periods of 2013, 2016, and 2020. The urban land cover and land use categories were classified and mapped using Random Forest algorithm. A combination of Landsat Operational Land Imager (OLI) satellite data with Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and derived Topographic Position Index (TPI) were used in the classification and monitoring of urban land cover and land use change. The urban land cover and land use types were mapped with average overall accuracies of about 87% in 2020, 85% in 2016 and 2013. The overall accuracy increased by around 8%, 9%, and 6% in 2020, 2016, and 2013 classifications respectively when lidarDEMand derived TPIwere added to Landsat OLIsatellite data in the classification relative to standalone Landsat OLI. Total change occurred in about 63% of Davidson County between 2016 and 2020 with significant net gains and losses among land cover and land use types. This information could support land use planning. Numéro de notice : A2022-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00042R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00042R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100320
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 243 - 253[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022041 SL Revue Centre de documentation Revues en salle Disponible Multi-temporal remote sensing data to monitor terrestrial ecosystem responses to climate variations in Ghana / Ram Avtar in Geocarto international, vol 37 n° 2 ([15/01/2022])
PermalinkThe use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space / Renato César Dos santos in Applied geomatics, vol 13 n° 4 (December 2021)
PermalinkFeature matching for multi-epoch historical aerial images: A new pipeline feature detection pipeline in open-source MicMac / Lulin Zhang in Blog de la RFPT, sans n° ([17/11/2021])
PermalinkQuantifying historical landscape change with repeat photography: an accuracy assessment of geospatial data obtained through monoplotting / Ulrike Bayr in International journal of geographical information science IJGIS, vol 35 n° 10 (October 2021)
PermalinkLearning from multimodal and multitemporal earth observation data for building damage mapping / Bruno Adriano in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
PermalinkEvaluation du potentiel des series d’images multi-temporelles optique et radar des satellites Sentinel 1 & 2 pour le suivi d’une zone côtière en contexte tropical: cas de l’estuaire du Cameroun pour la période 2015-2020 / Nourdi Njutapvoui in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)
PermalinkMonitoring the coastal changes of the Po river delta (Northern Italy) since 1911 using archival cartography, multi-temporal aerial photogrammetry and LiDAR data: implications for coastline changes in 2100 A.D. / Massimo Fabris in Remote sensing, Vol 13 n° 3 (February 2021)
PermalinkMapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery / Kasper Johansen in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkUsing Ranked Probability Skill Score (RPSS) as Nonlocal Root-Mean-Square Errors (RMSEs) for Mitigating Wet Bias of Soil Moisture Ocean Salinity (SMOS) Soil Moisture / Ju Hyoung Lee in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
Permalink