Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée > analyse discriminante
analyse discriminanteVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis Type de document : Article/Communication Auteurs : Marta Sapena, Auteur ; Luis Angel Ruiz, Auteur Année de publication : 2021 Article en page(s) : pp 375 - 396 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] distance euclidienne
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] pondérationRésumé : (auteur) The spatial pattern of urban growth determines how the physical, socio-economic and environmental characteristics of urban areas change over time. Monitoring urban areas for early identification of spatial patterns facilitates assuring their sustainable growth. In this paper, we assess the use of spatio-temporal metrics from land-use/land-cover (LULC) maps to identify growth patterns. We applied LULC change models to simulate different scenarios of urban growth spatial patterns (i.e., expansion, compact, dispersed, road-based and leapfrog) on various baseline urban forms (i.e., monocentric, polycentric, sprawl and linear). Then, we computed the spatio-temporal metrics for the simulated scenarios, selected the most informative metrics by applying discriminant analysis and classified the growth patterns using clustering methods. Two metrics, Weighted mean expansion and Weighted Euclidean distance, which account for the densification, compactness and concentration of urban growth, were the most efficient for classifying the five growth patterns, despite the influence of the baseline urban form. These metrics have the potential to identify growth patterns for monitoring and evaluating the management of developing urban areas. Numéro de notice : A2021-040 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1817463 date de publication en ligne : 08/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1817463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96752
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 375 - 396[article]Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping Type de document : Article/Communication Auteurs : Mthembeni Mngadi, Auteur ; John Odindi, Auteur ; Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] Eucalyptus (genre)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] KwaZulu-Natal (Afrique du Sud)
[Termes descripteurs IGN] Pinus (genre)
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) The successful launch and operation of the Sentinel satellite platform has provided access to freely available remotely sensed data useful for commercial forest species discrimination. Sentinel – 1 (S1) with a synthetic aperture radar (SAR) sensor and Sentinel – 2 (S2) multi-spectral sensor with additional and strategically positioned bands offer great potential for providing reliable information for discriminating and mapping commercial forest species. In this study, we sought to determine the value of S1 and S2 data characteristics in discriminating and mapping commercial forest species. Using linear discriminant analysis (LDA) algorithm, S2 multi-spectral imagery showed an overall classification accuracy of 84% (kappa = 0.81), with bands such as the red-edge (703.9–740.2 nm), narrow near infrared (835.1–864.8 nm), and short wave infrared (1613.7–2202.4 nm) particularly influential in discriminating individual forest species stands. When Sentinel 2’s spectral wavebands were fused with Sentinel 1’s (SAR) VV and VH polarimetric modes, overall classification accuracies improved to 87% (kappa = 0.83) and 88% (kappa = 0.85), respectively. These findings demonstrate the value of combining Sentinel’s multispectral and SAR structural information characteristics in improving commercial forest species discrimination. These, in addition to the sensors free availability, higher spatial resolution and larger swath width, offer unprecedented opportunities for improved local and large scale commercial forest species discrimination and mapping. Numéro de notice : A2021-050 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585483 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585483 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96719
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 1 - 12[article]Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
![]()
[article]
Titre : Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data Type de document : Article/Communication Auteurs : Sugandh Chauhan, Auteur ; Roshanak Darvishzadeh, Auteur ; Mirco Boschetti, Auteur ; Andrew Nelson, Auteur Année de publication : 2020 Article en page(s) : pp 138 - 151 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] agrégation
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] courbure
[Termes descripteurs IGN] gestion prévisionnelle
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Italie
[Termes descripteurs IGN] matrice de confusion
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] rendement agricole
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) Crop lodging - the bending of crop stems from their upright position or the failure of root-soil anchorage systems - is a major yield-reducing factor in wheat and causes deterioration of grain quality. The severity of lodging can be measured by a lodging score (LS)- an index calculated from the crop angle of inclination (CAI) and crop lodged area (LA). LS is difficult and time consuming to measure manually meaning that information on lodging occurrence and severity is limited and sparse. Remote sensing-based estimates of LS can provide more timely, synoptic and reliable information on crop lodging across vast areas. This information could improve estimates of crop yield losses, inform insurance loss adjusters and influence management decisions for subsequent seasons. This research - conducted in the 600 ha wheat sown area in the Bonifiche Ferraresi farm, located in Jolanda di Savoia, Ferrara, Italy - evaluated the performance of RADARSAT-2 and Sentinel-1 data to discriminate and classify lodging severity based on field measured LS. We measured temporal crop status characteristics related to lodging (e.g. lodged area, CAI, crop height) and collected relevant meteorological data (wind speed and rainfall) throughout May-June 2018. These field measurements were used to distinguish healthy (He) wheat from lodged wheat with different degrees of lodging severity (moderate, severe and very severe). We acquired multi-incidence angle (FQ8-27° and FQ21-41°) RADARSAT-2 and Sentinel-1 (40°) images and derived multiple metrics from them to discriminate and classify lodging severity. As a part of our data exploration, we performed a correlation analysis between the image-based metrics and LS. Next, a multi-temporal discriminant analysis approach, including a partial least squares (PLS-DA) method, was developed to classify lodging severities. We used the area under the curve-receiver operating characteristics (AUC-ROC) and confusion matrices to evaluate the accuracy of the PLS-DA classification models. Results show that (1) volume scattering components were highly correlated with LS at low incidence angles while double and surface scattering was more prevalent at high incidence angles; (2) lodging severity was best classified using low incidence angle R-FQ8 data (overall accuracy 72%) and (3) the Sentinel-1 data-based classification model was able to correctly identify 60% of the lodging severity cases in the study site. The results from this first study on classifying lodging severity using satellite-based SAR platforms suggests that SAR-based metrics can capture a substantial proportion of the observed variation in lodging severity, which is important in the context of operational crop lodging assessment in particular, and sustainable agriculture in general. Numéro de notice : A2020-276 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.012 date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.012 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95087
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 138 - 151[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 SL Revue Centre de documentation Revues en salle Disponible 081-2020063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A convolutional neural network with mapping layers for hyperspectral image classification / Rui Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : A convolutional neural network with mapping layers for hyperspectral image classification Type de document : Article/Communication Auteurs : Rui Li, Auteur ; Zhibin Pan, Auteur ; Yang Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3136 - 3147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algèbre linéaire
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] analyse en composantes principales
[Termes descripteurs IGN] analyse multidimensionnelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] couche thématique
[Termes descripteurs IGN] dispersion
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] réductionRésumé : (auteur) In this article, we propose a convolutional neural network with mapping layers (MCNN) for hyperspectral image (HSI) classification. The proposed mapping layers map the input patch into a low-dimensional subspace by multilinear algebra. We use our mapping layers to reduce the spectral and spatial redundancies and maintain most energy of the input. The feature extracted by our mapping layers can also reduce the number of following convolutional layers for feature extraction. Our MCNN architecture avoids the declining accuracy with increasing layers phenomenon of deep learning models for HSI classification and also saves the training time for its effective mapping layers. Furthermore, we impose the 3-D convolutional kernel on the convolutional layer to extract the spectral–spatial features for HSI. We tested our MCNN on three data sets of Indian Pines, University of Pavia, and Salinas, and we achieved the classification accuracy of 98.3%, 99.5%, and 99.3%, respectively. Experimental results demonstrate that the proposed MCNN can significantly improve classification accuracy and save much time consumption. Numéro de notice : A2020-234 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2948865 date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2948865 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94980
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3136 - 3147[article]A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
![]()
[article]
Titre : A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data Type de document : Article/Communication Auteurs : Qingwang Wang, Auteur ; Yanfeng Gu, Auteur Année de publication : 2020 Article en page(s) : pp 1568 -1586 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] Amérique du nord
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] calcul tensoriel
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification multibande
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] modèle géométrique
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] tenseur
[Termes descripteurs IGN] vectorisation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (Auteur) Multispectral light detection and ranging (MS-LiDAR) systems open the door to the possibility in the 3-D land cover classification at a finer scale using only point cloud data. This article proposes a model based on the tensor representation for multispectral point cloud classification. The proposed method combines the 3-D local spatial structure of each multispectral point by characterizing the point with a second-order tensor. The first mode of the tensor indicates the spatial location and spectral information of each point (i.e., the row of the second-order tensor) and the second mode denotes the neighborhood geometric and spectral structures (i.e., the column of the second-order tensor). Then we develop a novel tensor manifold discriminant embedding (TMDE) algorithm to extract the geometric–spectral features for multispectral point clouds classification. TMDE solves the mapping matrices of each mode by preserving the intraclass samples’ distribution further making it more compact and maximizing the distance of different classes. Finally, the support vector machine classifier with the extracted features as input is used to implement the classification of multispectral point clouds. Experiments are conducted on two real multispectral point cloud data sets. The experimental results demonstrate that the proposed method can achieve significant improvements in classification accuracies in comparison with several state-of-the-art algorithms. Numéro de notice : A2020-086 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947081 date de publication en ligne : 30/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947081 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94660
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1568 -1586[article]Evaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data / Charles Otunga in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkCombining low-density LiDAR and satellite images to discriminate species in mixed Mediterranean forest / Angela Blázquez-Casado in Annals of Forest Science [en ligne], vol 76 n° 2 (June 2019)
PermalinkDiscrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans / Tanumi Kumar in Geocarto international, vol 34 n° 4 ([15/03/2019])
PermalinkA growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
PermalinkConnecting infrared spectra with plant traits to identify species / Maria F. Buitrago in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
PermalinkAnalyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2 / François Messner in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
PermalinkBuilding extraction from fused LiDAR and hyperspectral data using Random Forest Algorithm / Saeid Parsian in Geomatica [en ligne], vol 71 n° 4 (December 2017)
PermalinkDiscriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network / Wei Zhao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
PermalinkUrban land use/land cover discrimination using image-based reflectance calibration methods for hyperspectral data / Shailesh S. Deshpande in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 5 (May 2017)
PermalinkDeep supervised and contractive neural network for SAR image classification / Jie Geng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
Permalink