Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée > analyse discriminante
analyse discriminanteVoir aussi |
Documents disponibles dans cette catégorie (114)



Etendre la recherche sur niveau(x) vers le bas
PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
Titre : Introduction au Machine Learning Type de document : Guide/Manuel Auteurs : Chloé-Agathe Azencott, Auteur Mention d'édition : 2ème édition Editeur : Paris : Dunod Année de publication : 2022 Collection : Info Sup Importance : 256 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-2-10-083476-1 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage par renforcement
[Termes IGN] arbre de décision
[Termes IGN] classification bayesienne
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle de régression
[Termes IGN] partition des données
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste margeIndex. décimale : 26.40 Intelligence artificielle Résumé : (Editeur) Cet ouvrage s'adresse aux étudiantes et étudiants en informatique ou maths appliquées, en L3, master ou école d'ingénieurs. Le Machine Learning est une discipline dont les outils puissants permettent aujourd'hui à de nombreux secteurs d'activité de réaliser des progrès spectaculaires grâce à l'exploitation de grands volumes de données. Le but de cet ouvrage est de vous fournir des bases solides sur les concepts et les algorithmes de ce domaine en plein essor. Il vous aidera à identifier les problèmes qui peuvent être résolus par une approche Machine Learning, à les formaliser, à identifier les algorithmes les mieux adaptés à chaque problème, à les mettre en oeuvre, et enfin à savoir évaluer les résultats obtenus. Les notions de cours sont illustrées et complétées par 85 exercices, tous corrigés. Note de contenu :
1. Présentation du machine learning
2. Apprentissage supervisé
3. Sélection de modèle et évaluation
4. Inférence bayésienne
5. Régressions paramétriques
6. Régularisation
7. Réseaux de neurones artificiels
8. Méthodes des plus proches voisins
9. Arbres et forêts
10. Machines à vecteurs de support et méthodes à noyaux
11. Réduction de dimension
12. Clustering
Annexe A - Notions d'optimisation convexe
Annexe B - Notions d'estimation ponctuelleNuméro de notice : 26783 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Manuel de cours Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99909 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26783-01 26.40 Manuel Informatique Centre de documentation Informatique Disponible Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
![]()
[article]
Titre : Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Qingqing Zhao, Auteur ; Jiayue Zhuang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 10394 - 10409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] ondelette de Gabor
[Termes IGN] segmentation d'image
[Termes IGN] superpixelRésumé : (auteur) Hyperspectral images encompass abundant information and provide unique characteristics for material classification. However, the labeling of training samples can be challenging in hyperspectral image classification. To address this problem, this study proposes a framework named flexible Gabor-based superpixel-level unsupervised linear discriminant analysis (FG- Su ULDA) to extract the most informative and discriminating features for classification. First, a number of 3-D flexible Gabor filters are rigorously designed using an asymmetric sinusoidal wave to sufficiently characterize the spatial–spectral structure in hyperspectral images. Then, an unsupervised linear discriminant analysis strategy guided by the entropy rate superpixel (ERS) segmentation algorithm, called Su ULDA, is skillfully introduced to reduce the extracted large amount of FG features. The Su ULDA method not only boosts the classification capability but also increases the peculiarity of features, with the aid of superpixel information. Finally, the achieved features are imported to the popular support vector machine classifier. The proposed FG- Su ULDA framework is applied to four real hyperspectral image data sets, and the experiments constantly prove that our FG- Su ULDA is superior to several state-of-the-art methods in both classification performance and computational efficiency, especially with scarce training samples. The codes of this work are available at http://jiasen.tech/papers/ for the sake of reproducibility. Numéro de notice : A2021-872 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3048994 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3048994 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99131
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10394 - 10409[article]Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
![]()
[article]
Titre : Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds Type de document : Article/Communication Auteurs : Alwin A. Hardenbol, Auteur ; Anton Kuzmin, Auteur ; Lauri Korhonen, Auteur ; Pasi Korpelainen, Auteur ; Timo Kumpula, Auteur ; Matti Maltamo, Auteur ; Jari Kouki, Auteur Année de publication : 2021 Article en page(s) : n° 10515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse discriminante
[Termes IGN] Betula (genre)
[Termes IGN] détection d'arbres
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] orthoimage couleur
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Populus tremula
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably. Numéro de notice : A2021-735 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10515 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.14214/sf.10515 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98691
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10515[article]Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
![]()
[article]
Titre : Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia Type de document : Article/Communication Auteurs : Peter Kitin, Auteur ; Edgard Espinoza, Auteur ; Hans Beeckman, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : Article 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] abattage (sylviculture)
[Termes IGN] Afzelia (genre)
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] bois
[Termes IGN] espèce végétale
[Termes IGN] forêt tropicale
[Termes IGN] identification de plantes
[Termes IGN] signature spectrale
[Termes IGN] spectrométrie
[Termes IGN] taxinomie
[Termes IGN] temps réelRésumé : (Auteur) Distinct chemical fingerprints of the wood of Afzelia pachyloba and A. bipindensis demonstrated an effective method for identifying these two commercially important species. Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) allowed high-throughput examination of chemotypes with vast potential in taxonomic, ecological, and forensic research of wood.
Context : Afzelia is a genus of valuable tropical timber trees. Accurate identification of wood is required for the prevention of illicit timber trade as well as for certification purposes in the forest and wood products industry. For many years, particular interest has been focused on attempts to distinguish the wood of A. bipindensis Harms from A. pachyloba Harms due to substantial differences in the commercial values of these two species.
Aims : We investigated if wood chemical signatures and microscopy could identify the wood of A. bipindensis and A. pachyloba.
Methods : We used two approaches, namely metabolome profiling by direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) and wood microstructure by light microscopy and SEM. In all, we analyzed samples from 89 trees of A. bipindensis, and A. pachyloba.
Results : The two species could not be separated by the IAWA standard microscopic wood features. SEM analysis showed considerable variation in the morphology of vestured pits; however, this variation was not species-specific. In contrast, DART-TOFMS followed by unsupervised statistics (Discriminant Analysis of Principal Components) showed distinct metabolome signatures of the two species.
Conclusion : DART-TOFMS provides a rapid method for wood identification that can be easily applied to small heartwood samples. Time- and cost-effective classification of wood chemotypes by DART-TOFMS can have potential applications in various research questions in forestry, wood science, tree-ecophysiology, and forensics.Numéro de notice : A2021-327 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01024-1 Date de publication en ligne : 31/03/2021 En ligne : https://doi.org/10.1007/s13595-020-01024-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97488
in Annals of Forest Science [en ligne] > vol 78 n° 2 (June 2021) . - Article 31[article]Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena Moll in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkDevelopment and analysis of land-use/land-cover spatio-temporal metrics in urban environments: Exploring urban growth patterns and linkages to socio-economic factors / Marta Sapena Moll (2021)
PermalinkExamining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkPerception de scène par un système multi-capteurs, application à la navigation dans des environnements d'intérieur structuré / Marwa Chakroun (2021)
PermalinkRemote sensing analysis of small scale dynamic phenomena in the atmospheric boundary layer / Kostas Cheliotis (2021)
PermalinkDiscriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
PermalinkA convolutional neural network with mapping layers for hyperspectral image classification / Rui Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkA discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkCloud detection by luminance and inter-band parallax analysis for pushbroom satellite imagers / Tristan Dagobert in IPOL Journal, Image Processing On Line, vol 10 (2020)
PermalinkEvaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data / Charles Otunga in Geocarto international, vol 34 n° 10 ([15/07/2019])
Permalink