Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage dirigé
apprentissage dirigéSynonyme(s)apprentissage superviséVoir aussi |
Documents disponibles dans cette catégorie (198)



Etendre la recherche sur niveau(x) vers le bas
Deriving map images of generalised mountain roads with generative adversarial networks / Azelle Courtial in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
![]()
[article]
Titre : Deriving map images of generalised mountain roads with generative adversarial networks Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage non-dirigé
[Termes IGN] carte routière
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] montagne
[Termes IGN] réseau antagoniste génératif
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals. Numéro de notice : A2023-073 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2123488 Date de publication en ligne : 20/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2123488 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101901
in International journal of geographical information science IJGIS > vol 37 n° 3 (March 2023)[article]Learning indoor point cloud semantic segmentation from image-level labels / Youcheng Song in The Visual Computer, vol 38 n° 9 (September 2022)
![]()
[article]
Titre : Learning indoor point cloud semantic segmentation from image-level labels Type de document : Article/Communication Auteurs : Youcheng Song, Auteur ; Zhengxing Sun, Auteur ; Qian Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3253 - 3265 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] apprentissage dirigé
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image RVB
[Termes IGN] scène intérieure
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) The data-hungry nature of deep learning and the high cost of annotating point-level labels make it difficult to apply semantic segmentation methods to indoor point cloud scenes. Therefore, exploring how to make point cloud segmentation methods less rely on point-level labels is a promising research topic. In this paper, we introduce a weakly supervised framework for semantic segmentation on indoor point clouds. To reduce the labor cost in data annotation, we use image-level weak labels that only indicate the classes that appeared in the rendered images of point clouds. The experiments validate the effectiveness and scalability of our framework. Our segmentation results on both ScanNet and S3DIS datasets outperform the state-of-the-art method using a similar level of weak supervision. Numéro de notice : A2022-793 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-022-02569-0 Date de publication en ligne : 02/07/2022 En ligne : https://doi.org/10.1007/s00371-022-02569-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101917
in The Visual Computer > vol 38 n° 9 (September 2022) . - pp 3253 - 3265[article]Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Évaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine / Maxime Mérizette in XYZ, n° 170 (mars 2022)
[article]
Titre : Évaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine Type de document : Article/Communication Auteurs : Maxime Mérizette, Auteur Année de publication : 2022 Article en page(s) : pp 61 - 65 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] jeu de données localisées
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (Auteur) Les scanners laser terrestres permettent d’acquérir beaucoup de données tout en présentant une rapidité et une facilité d’acquisition. Mais ceci est terni par le manque d’automatisation des traitements de nuages de points. La segmentation de nuage de points, consistant à extraire les éléments constitutifs d’un nuage, pâtit notamment de ce manque. Ce travail de fin d’études d’ingénieur, mené chez Quarta, se concentre sur les apports de l’apprentissage profond pour la réalisation d’une segmentation de nuage de points. Elle se propose de lister les différentes méthodes d’apprentissage profond permettant de travailler sur les nuages de points et teste différents algorithmes permettant de traiter les nuages de points volumineux. Numéro de notice : A2022-226 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100192
in XYZ > n° 170 (mars 2022) . - pp 61 - 65[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 SL Revue Centre de documentation Revues en salle Disponible
Titre : Introduction au Machine Learning Type de document : Guide/Manuel Auteurs : Chloé-Agathe Azencott, Auteur Mention d'édition : 2ème édition Editeur : Paris : Dunod Année de publication : 2022 Collection : Info Sup Importance : 256 p. Format : 17 x 24 cm ISBN/ISSN/EAN : 978-2-10-083476-1 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage par renforcement
[Termes IGN] arbre de décision
[Termes IGN] classification bayesienne
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle de régression
[Termes IGN] partition des données
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste margeIndex. décimale : 26.40 Intelligence artificielle Résumé : (Editeur) Cet ouvrage s'adresse aux étudiantes et étudiants en informatique ou maths appliquées, en L3, master ou école d'ingénieurs. Le Machine Learning est une discipline dont les outils puissants permettent aujourd'hui à de nombreux secteurs d'activité de réaliser des progrès spectaculaires grâce à l'exploitation de grands volumes de données. Le but de cet ouvrage est de vous fournir des bases solides sur les concepts et les algorithmes de ce domaine en plein essor. Il vous aidera à identifier les problèmes qui peuvent être résolus par une approche Machine Learning, à les formaliser, à identifier les algorithmes les mieux adaptés à chaque problème, à les mettre en oeuvre, et enfin à savoir évaluer les résultats obtenus. Les notions de cours sont illustrées et complétées par 85 exercices, tous corrigés. Note de contenu :
1. Présentation du machine learning
2. Apprentissage supervisé
3. Sélection de modèle et évaluation
4. Inférence bayésienne
5. Régressions paramétriques
6. Régularisation
7. Réseaux de neurones artificiels
8. Méthodes des plus proches voisins
9. Arbres et forêts
10. Machines à vecteurs de support et méthodes à noyaux
11. Réduction de dimension
12. Clustering
Annexe A - Notions d'optimisation convexe
Annexe B - Notions d'estimation ponctuelleNuméro de notice : 26783 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Manuel de cours Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99909 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26783-01 26.40 Manuel Informatique Centre de documentation Informatique Disponible PermalinkMLMT-CNN for object detection and segmentation in multi-layer and multi-spectral images / Majedaldein Almahasneh in Machine Vision and Applications, vol 33 n° 1 (January 2022)
PermalinkPermalinkNational scale mapping of larch plantations for Wales using the Sentinel-2 data archive / Suvarna M. Punalekar in Forest ecology and management, vol 501 (December-1 2021)
PermalinkBagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation / Hamid Jafarzadeh in Remote sensing, vol 13 n° 21 (November-1 2021)
PermalinkA comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area / Myung-Jin Jun in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkDiffuse attenuation coefficient (Kd) from ICESat-2 ATLAS spaceborne Lidar using random-forest regression / Forrest Corcoran in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)
PermalinkTwo hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
PermalinkAn adaptive filtering algorithm of multilevel resolution point cloud / Youyuan Li in Survey review, Vol 53 n° 379 (July 2021)
PermalinkMachine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)
Permalink