Descripteur
Documents disponibles dans cette catégorie (177)



Etendre la recherche sur niveau(x) vers le bas
Validation of regional and global ionosphere maps from GNSS measurements versus IRI2016 during different magnetic activity / Ahmed Sedeek in Journal of applied geodesy, vol 16 n° 3 (July 2022)
![]()
[article]
Titre : Validation of regional and global ionosphere maps from GNSS measurements versus IRI2016 during different magnetic activity Type de document : Article/Communication Auteurs : Ahmed Sedeek, Auteur Année de publication : 2022 Article en page(s) : pp 229 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Afrique du nord
[Termes IGN] données GNSS
[Termes IGN] harmonique sphérique
[Termes IGN] International Reference Ionosphere
[Termes IGN] interpolation
[Termes IGN] Matlab
[Termes IGN] modèle ionosphérique
[Termes IGN] station GNSS
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) This manuscript explores the divergence of the Vertical Total Electron Content (VTEC) estimated from Global Navigation Satellite System (GNSS) measurements using global, regional, and International Reference Ionosphere (IRI) models over low to high latitude regions during various magnetic activity. The VTEC is estimated using a territorial network consisting of 7 GNSS stations in Egypt and 10 GNSS stations from the International GNSS Service (IGS) Global network. The impact of magnetic activity on VTEC is investigated. Due to the deficiency of IGS receivers in north Africa and the shortage of GNSS measurements, an extra high interpolation is done to cover the deficit of data over North Africa. A MATLAB code was created to produce VTEC maps for Egypt utilizing a territorial network contrasted with global maps of VTEC, which are delivered by the Center for Orbit Determination in Europe (CODE). Thus we can have genuine VTEC maps estimated from actual GNSS measurements over any region of North Africa. A Spherical Harmonics Expansion (SHE) equation was modelled using MATLAB and called Local VTEC Model (LVTECM) to estimate VTEC values using observations of dual-frequency GNSS receivers. The VTEC calculated from GNSS measurement using LVTECM is compared with CODE VTEC results and IRI-2016 VTEC model results. The analysis of outcomes demonstrates a good convergence between VTEC from CODE and estimated from LVTECM. A strong correlation between LVTECM and CODE reaches about 96 % and 92 % in high and low magnetic activity, respectively. The most extreme contrasts are found to be 2.5 TECu and 1.3 TECu at high and low magnetic activity, respectively. The maximum discrepancies between LVTECM and IRI-2016 are 9.7 TECu and 2.3 TECu at a high and low magnetic activity. Variation in VTEC due to magnetic activity ranges from 1–5 TECu in moderate magnetic activity. The estimated VTEC from the regional network shows a 95 % correlation between the estimated VTEC from LVTECM and CODE with a maximum difference of 5.9 TECu. Numéro de notice : A2022-495 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0046 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1515/jag-2021-0046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100985
in Journal of applied geodesy > vol 16 n° 3 (July 2022) . - pp 229 - 240[article]
[article]
Titre : The RTM harmonic correction revisited Type de document : Article/Communication Auteurs : R. Klees, Auteur ; Kurt Seitz, Auteur ; D.C. Slobbe, Auteur Année de publication : 2022 Article en page(s) : n° 39 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse harmonique
[Termes IGN] anomalie de pesanteur
[Termes IGN] Auvergne
[Termes IGN] correction des altitudes
[Termes IGN] géoïde local
[Termes IGN] harmonique sphérique
[Termes IGN] hauteur ellipsoïdale
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle de géopotentiel local
[Termes IGN] modèle numérique de terrain
[Termes IGN] Norvège
[Termes IGN] quasi-géoïde
[Termes IGN] résiduRésumé : (auteur) In this paper, we derive improved expressions for the harmonic correction to gravity and, for the first time, expressions for the harmonic correction to potential and height anomaly. They need to be applied at stations buried inside the masses to transform internal values into harmonically downward continued values, which are then input to local quasi-geoid modelling using least-squares collocation or least-squares techniques in combination with the remove-compute-restore approach. Harmonic corrections to potential and height anomaly were assumed to be negligible so far resulting in yet unknown quasi-geoid model errors. The improved expressions for the harmonic correction to gravity, and the new expressions for the harmonic correction to potential and height anomaly are used to quantify the approximation errors of the commonly used harmonic correction to gravity and to quantify the magnitude of the harmonic correction to potential and height anomaly. This is done for two test areas with different topographic regimes. One comprises parts of Norway and the North Atlantic where the presence of deep, long, and narrow fjords suggest extreme values for the harmonic correction to potential and height anomaly and corresponding large errors of the commonly used approximation of the harmonic correction to gravity. The other one is located in the Auvergne test area with a moderate topography comprising both flat and hilly areas and therefore may be representative for many areas around the world. For both test areas, two RTM surfaces with different smoothness are computed simulating the use of a medium-resolution and an ultra-high-resolution reference gravity field, respectively. We show that the errors of the commonly used harmonic correction to gravity may be as large as the harmonic correction itself and attain peak values in areas of strong topographic variations of about 100 mGal. Moreover, we show that this correction may introduce long-wavelength biases in the computed quasi-geoid model. Furthermore, we show that the harmonic correction to height anomaly can attain values on the order of a decimetre at some points. Overall, however, the harmonic correction to height anomaly needs to be applied only in areas of strong topographic variations. In flat or hilly areas, it is mostly smaller than one centimetre. Finally, we show that the harmonic corrections increase with increasing smoothness of the RTM surface, which suggests to use a RTM surface with a spatial resolution comparable to the finest scales which can be resolved by the data rather than depending on the resolution of the global geopotential model used to reduce the data. Numéro de notice : A2022-414 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01625-w Date de publication en ligne : 30/05/2022 En ligne : https://doi.org/10.1007/s00190-022-01625-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100769
in Journal of geodesy > vol 96 n° 6 (June 2022) . - n° 39[article]A continuous change tracker model for remote sensing time series reconstruction / Yangjian Zhang in Remote sensing, vol 14 n° 9 (May-1 2022)
![]()
[article]
Titre : A continuous change tracker model for remote sensing time series reconstruction Type de document : Article/Communication Auteurs : Yangjian Zhang, Auteur ; Li Wang, Auteur ; Yuanhuizi He, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse harmonique
[Termes IGN] compression d'image
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] production primaire brute
[Termes IGN] reconstruction d'image
[Termes IGN] réflectance de surface
[Termes IGN] série temporelleRésumé : (auteur) It is hard for current time series reconstruction methods to achieve the balance of high-precision time series reconstruction and explanation of the model mechanism. The goal of this paper is to improve the reconstruction accuracy with a well-explained time series model. Thus, we developed a function-based model, the CCTM (Continuous Change Tracker Model) model, that can achieve high precision in time series reconstruction by tracking the time series variation rate. The goal of this paper is to provide a new solution for high-precision time series reconstruction and related applications. To test the reconstruction effects, the model was applied to four types of datasets: normalized difference vegetation index (NDVI), gross primary productivity (GPP), leaf area index (LAI), and MODIS surface reflectance (MSR). Several new observations are as follows. First, the CCTM model is well explained and based on the second-order derivative theorem, which divides the yearly time series into four variation types including uniform variations, decelerated variations, accelerated variations, and short-periodical variations, and each variation type is represented by a designed function. Second, the CCTM model provides much better reconstruction results than the Harmonic model on the NDVI, GPP, MSR, and LAI datasets for the seasonal segment reconstruction. The combined use of the Savitzky–Golay filter and the CCTM model is better than the combinations of the Savitzky–Golay filter with other models. Third, the Harmonic model has the best trend-fitting ability on the yearly time series dataset, with the highest R-Square and the lowest RMSE among the four function fitting models. However, with seasonal piecewise fitting, the four models all achieved high accuracy, and the CCTM performs the best. Fourth, the CCTM model should also be applied to time series image compression, two compression patterns with 24 coefficients and 6 coefficients respectively are proposed. The daily MSR dataset can achieve a compression ratio of 15 by using the 6-coefficients method. Finally, the CCTM model also has the potential to be applied to change detection, trend analysis, and phenology and seasonal characteristics extractions. Numéro de notice : A2022-384 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14092280 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.3390/rs14092280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100662
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2280[article]A novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
![]()
[article]
Titre : A novel regression method for harmonic analysis of time series Type de document : Article/Communication Auteurs : Qiang Zhou, Auteur ; Zhe Zhu, Auteur ; George Xian, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 48 - 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] détection de changement
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-SWIR
[Termes IGN] modèle de régression
[Termes IGN] réflectance
[Termes IGN] régression harmonique
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Harmonic analysis of time series is an important technique to reveal seasonal land surface dynamics using remote sensing information. However, frequency selection in the harmonic analysis is often difficult because high-frequency components are useful for delineating seasonal dynamics but sensitive to noise and gaps in time series. On the other hand, it is challenging to obtain temporally continuous satellite data with high quality because of atmospheric contamination. We developed a novel regression method named Harmonic Adaptive Penalty Operator (HAPO) for harmonic analysis of unevenly distributed time series. We introduced a new penalty function to minimize unexpected fluctuations in the model, which can substantially reduce the overfitting issue of regression in time series with temporal gaps. Specifically, the new penalty function minimizes the length of the model curve and the value range difference between the model and time series observations. We compared HAPO with three widely used regression methods (OLS: Ordinary Least Squares; LASSO: Least Absolute Shrinkage and Selection Operator; and Ridge) with different scenarios using Landsat time series data across the United States. First, we evaluated methods using Landsat surface reflectance time series within a single year. HAPO showed small and consistent monthly Root Mean Square Deviation (RMSD) values, in which most of the time RMSD values of predicted reflectance were less than 0.04. More importantly, HAPO showed consistent and less bias given varying density and irregularity of time series. Second, we evaluated methods using multi-year time series and the result suggested that HAPO was a better predictor of relatively short time series (less than4 years) with steady small RMSD values. When a longer time series (≥4 years) was used, all four methods disclosed similar RMSD values, but HAPO outperformed other three methods when there were temporal gaps. Last, we preliminarily tested how regression methods affected change detection and classification accuracy. HAPO showed the highest change detection accuracy of all tests in terms of F1 score when using the change threshold of 0.9999. In classification, HAPO produced the highest accuracy for short time series segments (one- or two-year time series). In contrast, all methods reached similar accuracy for 5-year time series. These results suggest that for areas that have large seasonal observation gaps or for time series that have less than 4 years records, HAPO can provide more consistent and accurate analytical results than other regression methods for harmonic analysis of time series. Numéro de notice : A2022-133 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.006 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99729
in ISPRS Journal of photogrammetry and remote sensing > vol 185 (March 2022) . - pp 48 - 61[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022031 SL Revue Centre de documentation Revues en salle Disponible Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed / Ropesh Goyal in Survey review, vol 54 n° 382 (January 2022)
![]()
[article]
Titre : Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed Type de document : Article/Communication Auteurs : Ropesh Goyal, Auteur ; Jonas Ågren, Auteur ; Will E. Featherstone, Auteur Année de publication : 2022 Article en page(s) : pp 57 - 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] Auvergne
[Termes IGN] géoïde local
[Termes IGN] harmonique sphérique
[Termes IGN] méthode déterministe
[Termes IGN] NGF-IGN69
[Termes IGN] nivellement par GPS
[Termes IGN] processus stochastique
[Termes IGN] quasi-géoïdeRésumé : (auteur) Since 2006, several different groups have computed geoid and/or quasigeoid (quasi/geoid) models for the Auvergne test area in central France using various approaches. In this contribution, we compute and compare quasigeoid models for Auvergne using Curtin University of Technology’s and the Swedish Royal Institute of Technology’s approaches. These approaches differ in many ways, such as their treatment of the input data, choice of type of spherical harmonic model (combined or satellite-only), form and sequence of correction terms applied, and different modified Stokes’s kernels (deterministic or stochastic). We have also compared our results with most of the previously reported studies over Auvergne in order to seek any improvements with respect to time [exceptions are when different subsets of data have been used]. All studies considered here compare the computed quasigeoid models with the same 75 GPS-levelling heights over Auvergne. The standard deviation for almost all of the computations (without any fitting) is of the order of 30–40 mm, so there is not yet any clear indication whether any approach is necessarily better than any other nor improving over time. We also recommend more standardisation on the presentation of quasi/geoid comparisons with GPS-levelling data so that results from different approaches over the same areas can be compared more objectively. Numéro de notice : A2022-111 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1871821 En ligne : https://doi.org/10.1080/00396265.2021.1871821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99628
in Survey review > vol 54 n° 382 (January 2022) . - pp 57 - 69[article]Tropospheric and range biases in Satellite Laser Ranging / Mateusz Drożdżewski in Journal of geodesy, vol 95 n° 9 (September 2021)
PermalinkMonitoring forest disturbance using time-series MODIS NDVI in Michoacán, Mexico / Yao Gao in Geocarto international, vol 36 n° 15 ([15/08/2021])
PermalinkGravitational field modelling near irregularly shaped bodies using spherical harmonics: a case study for the asteroid (101955) Bennu / Blažej Bucha in Journal of geodesy, vol 95 n° 5 (May 2021)
PermalinkNew algorithms for spherical harmonic analysis of area mean values over blocks delineated by equiangular and Gaussian grids / Rong Sun in Journal of geodesy, vol 95 n° 5 (May 2021)
PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkON GLONASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP / Zheng Zhang in Journal of geodesy, vol 95 n° 3 (March 2021)
PermalinkAssessment of mass-induced sea level variability in the Tropical Indian Ocean based on GRACE and altimeter observations / Shiva Shankar Manche in Journal of geodesy, vol 95 n° 2 (February 2021)
PermalinkUncertainties and errors in algorithms for elevation gradients / Dong Shi in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkA hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging / Anno Löcher in Journal of geodesy, vol 95 n° 1 (January 2021)
PermalinkThe influence of sea-level changes on geodetic datums along the east coast of China / Yang Liu in Marine geodesy, vol 44 n° 1 (January 2021)
Permalink