Descripteur
Documents disponibles dans cette catégorie (15236)


Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 2[article]Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics / Jakob Wernicke in Remote sensing of environment, vol 279 (15 September 2022)
![]()
[article]
Titre : Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics Type de document : Article/Communication Auteurs : Jakob Wernicke, Auteur ; Christian Torsten Seltmann, Auteur ; Ralf Wenzel, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Allemagne
[Termes IGN] analyse comparative
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] semis de points
[Termes IGN] stratificationRésumé : (auteur) Knowledge about the forest canopy stratification is of essential importance for forest management and planning. Collecting structural information (e.g. natural regeneration) still depends on cost and labour intensive forest inventories with a coarse spatio-temporal resolution. Remote sensing partly overcomes these limitations and particularly active sensors of type light detection and ranging (LiDAR) have proven their great potential of separating forest strata. The applicability of LiDAR metrics for the differentiation of the spruce dominated forest strata in Central Germany has not been tested yet. Additionally, studying the potential of Sentinel-2 metrics for the classification of forest strata is lacking too. In this study, we investigated the capabilities of six different classification approaches for the differentiation of five forest strata that are typical for the study region. Reference data were derived from forest inventory measurements surveyed on a dense 200 × 200 m grid. The six classification approaches were trained with fused and un-fused LiDAR and Sentinel-2 inferred metrics. The classification results were compared using the overall mean accuracy, sensitivity and specificity via receivers operating characteristics of multi-class problems. We were interested in the classification abilities of Sentinel-2 metrics due to the obvious advantages of Sentinel-2 based metrics (free of charge, high spatio-temporal coverage). We assumed that the canopy structure determines the reflection on stand level and thus might facilitate the classification of different canopy strata. Beforehand, it was important to examine the influence of distinctly imbalanced and collinear reference data on the classification results. We found that the Random Forest classifier most accurately separated the five forest strata with a mean overall accuracy of 83.3% (Kappa = 76.2%). These values were achieved from balanced training data and the classification capability was confirmed by classification results from an independent test data set. Fused predictors of active (LiDAR) and passive (Sentinel-2) remote sensing revealed no substantial improvement in the classification accuracy due to the dominant role of LiDAR metrics. Herein, we identified that especially the height variability, top height, portion of LiDAR-returns between 2 m and 10 m and the standard deviation of the return number between the 25th and 50th height percentile, predominately contributed to the classification accuracy. Classification results purely based on Sentinel-2 metrics revealed a rather small overall mean accuracy of 54.7%. The metrics (e.g. median, variance, entropy) were derived from Sentinel-2 indices, covering the visible and near to short infrared spectrum. Variable importance computations unraveled a detectable but minor contribution of MSI, TCG, NDVI to the classification result. Finally, our data driven observations illustrated serious drawbacks associated to data imbalance, collinearity and autocorrelation and presented practical guidance to cope with these issues. Numéro de notice : A2022-510 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113134 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101047
in Remote sensing of environment > vol 279 (15 September 2022) . - n° 113134[article]Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]A general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : A general model for creating robust choropleth maps Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2022 Article en page(s) : n° 101850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] carte choroplèthe
[Termes IGN] incertitude des données
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particules
[Termes IGN] programmation dynamiqueRésumé : (auteur) Choropleth maps visualize areal geographical data by grouping data into a few map classes and assigning different colors, shades, or patterns. Recent studies show that data uncertainty, commonly observed in real-life applications, should also be accounted for when determining the best classification scheme. Due to data uncertainty, a few studies note that map units might be placed in a wrong class, and the concept of map robustness has been introduced to minimize such misplacement. Recently, an algorithm has been developed to integrate robustness into the design of the optimal map classification scheme. However, the existing algorithm has two limitations: first, it is only suitable for certain robustness metrics. Second, when identifying the optimal class breaks, the existing algorithm requires predefined candidate class break values, which might lead to sub-optimal solutions. This paper resolves these issues by proposing a new model, namely, the Continuous Robust Map Classification Problem (CRMCP), and the associated solution approach. The CRMCP allows mapmakers to customize robustness metrics according to their data and applications. In addition, a particle swarm optimization algorithm is developed to solve the CRMCP. The model and algorithm are tested using American Community Survey data. Test results suggest that the new approach can find better solutions than the existing algorithm. The study improves the usability of choropleth maps when uncertain geographical attributes are involved and allows spatial analysts and decision-makers to incorporate robustness into the mapmaking process more flexibly. Numéro de notice : A2022-514 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101850 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101055
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101850[article]Exploring tree growth allometry using two-date terrestrial laser scanning / Tuomas Yrttimaa in Forest ecology and management, vol 518 (15 August 2022)
![]()
[article]
Titre : Exploring tree growth allometry using two-date terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ville Luoma, Auteur ; Ninni Saarinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120303 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] houppier
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] surface terrière
[Termes IGN] volume en boisRésumé : (auteur) Tree growth is a physio-ecological phenomena of high interest among researchers across disciplines. Observing changes in tree characteristics has conventionally required either repeated measurements of the characteristics of living trees, retrospective measurements of destructively sampled trees, or modelling. The use of close-range sensing techniques such as terrestrial laser scanning (TLS) has enabled non-destructive approaches to reconstruct the three-dimensional (3D) structure of trees and tree communities in space and time. This study aims at improving the understanding of tree allometry in general and interactions between tree growth and its neighbourhood in particular by using two-date point clouds. We investigated how variation in the increments in basal area at the breast height (Δg1.3), basal area at height corresponding to 60% of tree height (Δg06h), and volume of the stem section below 50% of tree height (Δv05h) can be explained with TLS point cloud-based attributes characterizing the spatiotemporal structure of a tree crown and crown neighbourhood, entailing the competitive status of a tree. The analyses were based on 218 trees on 16 sample plots whose 3D characteristics were obtained at the beginning (2014, T1) and at the end of the monitoring period (2019, T2) from multi-scan TLS point clouds using automatic point cloud processing methods. The results of this study showed that, within certain tree communities, strong relationships (|r| > 0.8) were observed between increments in the stem dimensions and the attributes characterizing crown structure and competition. Most often, attributes characterizing the competitive status of a tree, and the crown structure at T1, were the most important attributes to explain variation in the increments of stem dimensions. Linear mixed-effect modelling showed that single attributes could explain up to 35–60% of the observed variation in Δg1.3, Δg06h and Δv05h, depending on the tree species. This tree-level evidence of the allometric relationship between stem growth and crown dynamics can further be used to justify landscape-level analyses based on airborne remote sensing technologies to monitor stem growth through the structure and development of crown structure. This study contributes to the existing knowledge by showing that laser-based close-range sensing is a feasible technology to provide 3D characterization of stem and crown structure, enabling one to quantify structural changes and the competitive status of trees for improved understanding of the underlying growth processes. Numéro de notice : A2022-484 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120303 Date de publication en ligne : 22/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100899
in Forest ecology and management > vol 518 (15 August 2022) . - n° 120303[article]Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM / Jiehua Cai in Engineering Geology, vol 305 (August 2022)
PermalinkTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
PermalinkAdaptive transfer of color from images to maps and visualizations / Mingguang Wu in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
PermalinkAn accurate train positioning method using tightly-coupled GPS + BDS PPP/IMU strategy / Wei Jiang in GPS solutions, vol 26 n° 3 (July 2022)
PermalinkEvaluation of QZSS orbit and clock products for real-time positioning applications / Brian Bramanto in Journal of applied geodesy, vol 16 n° 3 (July 2022)
PermalinkGANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkGlobal forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)
PermalinkGNSS carrier phase time-variant observable-specific signal bias (OSB) handling: an absolute bias perspective in multi-frequency PPP / Ke Su in GPS solutions, vol 26 n° 3 (July 2022)
PermalinkHeat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
PermalinkIntegration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)
Permalink