Descripteur
Termes descripteurs IGN > géomatique > données localisées > données localisées numériques > données vectorielles
données vectoriellesSynonyme(s)mode vecteurVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps / Xiongfeng Yan in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps Type de document : Article/Communication Auteurs : Xiongfeng Yan, Auteur ; Tinghua Ai, Auteur ; Min Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 490 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage non-dirigé
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] mesure géométrique
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] représentation cognitive
[Termes descripteurs IGN] représentation spatialeRésumé : (auteur) The shape of a geospatial object is an important characteristic and a significant factor in spatial cognition. Existing shape representation methods for vector-structured objects in the map space are mainly based on geometric and statistical measures. Considering that shape is complicated and cognitively related, this study develops a learning strategy to combine multiple features extracted from its boundary and obtain a reasonable shape representation. Taking building data as example, this study first models the shape of a building using a graph structure and extracts multiple features for each vertex based on the local and regional structures. A graph convolutional autoencoder (GCAE) model comprising graph convolution and autoencoder architecture is proposed to analyze the modeled graph and realize shape coding through unsupervised learning. Experiments show that the GCAE model can produce a cognitively compliant shape coding, with the ability to distinguish different shapes. It outperforms existing methods in terms of similarity measurements. Furthermore, the shape coding is experimentally proven to be effective in representing the local and global characteristics of building shape in application scenarios such as shape retrieval and matching. Numéro de notice : A2021-166 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768260 date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768260 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97100
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 490 - 512[article]Building facade reconstruction using crowd-sourced photos and two-dimensional maps / Wu Jie in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
![]()
[article]
Titre : Building facade reconstruction using crowd-sourced photos and two-dimensional maps Type de document : Article/Communication Auteurs : Wu Jie, Auteur ; Junya Mao, Auteur ; Song Chen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 677 - 694 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] édition en libre accès
[Termes descripteurs IGN] façade
[Termes descripteurs IGN] image multi sources
[Termes descripteurs IGN] implémentation (informatique)
[Termes descripteurs IGN] reconstruction 2D du bâti
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) To address the high-cost problem of the current three-dimensional (3D) reconstruction for urban buildings, a new technical framework is proposed to generate 3D building facade information using crowd-sourced photos and two-dimensional (2D) building vector data in this paper. The crowd-sourced photos mainly consisted of Tencent street view images and other-source photos, which were collected from three platforms, including search engines, social media, and mobile phones. The photos were selected and grouped first, and then a structure from motion algorithm was used for 3D reconstruction. Finally, the reconstructed point clouds were registered with 2D building vector data. The test implementation was conducted in the Jianye District of Nanjing, China, and the generated point clouds showed a good fit with the true values. The proposed 3D reconstruction method represents a multi-sourced data integration process. The advantage of the proposed approach lies in the open source and low-cost data used in this study. Numéro de notice : A2020-708 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.11.677 date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.14358/PERS.86.11.677 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96393
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 11 (November 2020) . - pp 677 - 694[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020111 SL Revue Centre de documentation Revues en salle Disponible Local terrain modification method considering physical feature constraints for vector elements / Jiangfeng She in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
![]()
[article]
Titre : Local terrain modification method considering physical feature constraints for vector elements Type de document : Article/Communication Auteurs : Jiangfeng She, Auteur ; Junyan Liu, Auteur ; Junzhong Tan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 452 - 470 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] analyse vectorielle
[Termes descripteurs IGN] contrainte d'intégrité
[Termes descripteurs IGN] déformation de surface
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] interpolation
[Termes descripteurs IGN] processeur graphique
[Termes descripteurs IGN] rastérisation
[Termes descripteurs IGN] relief
[Termes descripteurs IGN] superposition de données
[Termes descripteurs IGN] surface du sol
[Termes descripteurs IGN] terrain
[Termes descripteurs IGN] traitement parallèle
[Termes descripteurs IGN] zone tamponRésumé : (auteur) Many studies have been focused on rendering 2D vector elements on 3D terrain, and a series of algorithms have been proposed. Most of these algorithms struggle to provide a seamless overlay between vector elements and an irregular terrain surface. Despite their importance, the physical characteristics of vector elements are often ignored, which distorts the surface of vector elements. For example, if vector elements that represent roads and rivers are simply overlaid on terrain, the phenomena of uneven surfaces and rivers going uphill may occur because of elevation fluctuation. To correct these deficiencies, terrain should be modified according to the physical characteristics of vectors. We propose a local terrain modification method: First, the elevation of terrain covered by vector elements is recalculated according to vectors’ physical characteristics. Second, the multigrid method is used to realize a smooth transition between the modified terrain and its surrounding area. Finally, by setting different transition ranges and comparing the visualization effects, rules are given for the selection of a suitable range. After modification, the terrain conforms to vectors’ physical characteristics, and the overall relief is undamaged. The proposed method was applied to a CPU–GPU parallel heterogeneous model and demonstrated a high level of performance. Numéro de notice : A2020-489 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1770128 date de publication en ligne : 06/07/2020 En ligne : https://doi.org/10.1080/15230406.2020.1770128 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95660
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 452 - 470[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 SL Revue Centre de documentation Revues en salle Disponible Automated conflation of digital elevation model with reference hydrographic lines / Timofey Samsonov in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
![]()
[article]
Titre : Automated conflation of digital elevation model with reference hydrographic lines Type de document : Article/Communication Auteurs : Timofey Samsonov, Auteur Année de publication : 2020 Article en page(s) : 40 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] alignement
[Termes descripteurs IGN] cartographie hydrographique
[Termes descripteurs IGN] conflation
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réseau de drainage
[Termes descripteurs IGN] Triangulated Irregular Network
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Combining misaligned spatial data from different sources complicates spatial analysis and creation of maps. Conflation is a process that solves the misalignment problem through spatial adjustment or attribute transfer between similar features in two datasets. Even though a combination of digital elevation model (DEM) and vector hydrographic lines is a common practice in spatial analysis and mapping, no method for automated conflation between these spatial data types has been developed so far. The problem of DEM and hydrography misalignment arises not only in map compilation, but also during the production of generalized datasets. There is a lack of automated solutions which can ensure that the drainage network represented in the surface of generalized DEM is spatially adjusted with independently generalized vector hydrography. We propose a new method that performs the conflation of DEM with linear hydrographic data and is embeddable into DEM generalization process. Given a set of reference hydrographic lines, our method automatically recognizes the most similar paths on DEM surface called counterpart streams. The elevation data extracted from DEM is then rubbersheeted locally using the links between counterpart streams and reference lines, and the conflated DEM is reconstructed from the rubbersheeted elevation data. The algorithm developed for extraction of counterpart streams ensures that the resulting set of lines comprises the network similar to the network of ordered reference lines. We also show how our approach can be seamlessly integrated into a TIN-based structural DEM generalization process with spatial adjustment to pre-generalized hydrographic lines as additional requirement. The combination of the GEBCO_2019 DEM and the Natural Earth 10M vector dataset is used to illustrate the effectiveness of DEM conflation both in map compilation and map generalization workflows. Resulting maps are geographically correct and are aesthetically more pleasing in comparison to a straightforward combination of misaligned DEM and hydrographic lines without conflation. Numéro de notice : A2020-297 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9050334 date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.3390/ijgi9050334 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95135
in ISPRS International journal of geo-information > vol 9 n° 5 (May 2020) . - 40 p.[article]Exploring the potential of deep learning segmentation for mountain roads generalisation / Azelle Courtial in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
![]()
[article]
Titre : Exploring the potential of deep learning segmentation for mountain roads generalisation Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Achraf El Ayedi, Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 338 ; 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] 1:25.000
[Termes descripteurs IGN] 1:250.000
[Termes descripteurs IGN] Alpes (France)
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données routières
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] généralisation automatique de données
[Termes descripteurs IGN] montagne
[Termes descripteurs IGN] route
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] symbole graphique
[Termes descripteurs IGN] virage
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Among cartographic generalisation problems, the generalisation of sinuous bends in mountain roads has always been a popular one due to its difficulty. Recent research showed the potential of deep learning techniques to overcome some remaining research problems regarding the automation of cartographic generalisation. This paper explores this potential on the popular mountain road generalisation problem, which requires smoothing the road, enlarging the bend summits, and schematising the bend series by removing some of the bends. We modelled the mountain road generalisation as a deep learning problem by generating an image from input vector road data, and tried to generate it as an output of the model a new image of the generalised roads. Similarly to previous studies on building generalisation, we used a U-Net architecture to generate the generalised image from the ungeneralised image. The deep learning model was trained and evaluated on a dataset composed of roads in the Alps extracted from IGN (the French national mapping agency) maps at 1:250,000 (output) and 1:25,000 (input) scale. The results are encouraging as the output image looks like a generalised version of the roads and the accuracy of pixel segmentation is around 65%. The model learns how to smooth the output roads, and that it needs to displace and enlarge symbols but does not always correctly achieve these operations. This article shows the ability of deep learning to understand and manage the geographic information for generalisation, but also highlights challenges to come. Numéro de notice : A2020-295 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9050338 date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.3390/ijgi9050338 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95131
in ISPRS International journal of geo-information > vol 9 n° 5 (May 2020) . - n° 338 ; 21 p.[article]An OD flow clustering method based on vector constraints: a case study for Beijing taxi origin-destination data / Xiaogang Guo in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
PermalinkPermalinkCartographie de l’aléa érosif dans le bassin sud du Litani-Liban / Hussein El Hage Hassan in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)
PermalinkChamps et objets pour mieux représenter les phénomènes dans leur contexte géographique / Anne Ruas in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)
PermalinkGeospatial data organization methods with emphasis on aperture-3 hexagonal discrete global grid systems / Ali Mahdavi Amiri in Cartographica, vol 54 n° 1 (spring 2019)
PermalinkMethod for an automatic alignment of imagery and vector data applied to cadastral information in Poland / Juan J. Ruiz-Lendínez in Survey review, vol 51 n° 365 (March 2019)
PermalinkMise en place de procédures automatisées pour les reports topographiques en milieu ferroviaire à partir de données photogrammétriques et LiDAR acquises par drones / Marion Hinaux in XYZ, n° 158 (mars 2019)
PermalinkEngraved footprints from the past. Retrieving cartographic geohistorical data from the Cassini Carte de France, 1750-1789 / Bertrand Duménieu (2019)
PermalinkSIG, introduction à la géomatique et mise en place d'un système d'information géographique libre / Nicolas Roelandt (2019)
PermalinkUrban impervious surface estimation from remote sensing and social data / Yan Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 12 (December 2018)
Permalink