Descripteur
Termes IGN > mathématiques > statistique mathématique > géostatistique
géostatistiqueSynonyme(s)statistique spatialeVoir aussi |
Documents disponibles dans cette catégorie (218)



Etendre la recherche sur niveau(x) vers le bas
Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
![]()
[article]
Titre : Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information Type de document : Article/Communication Auteurs : Shaohui Zhang, Auteur ; Cédric Vega , Auteur ; Christine Deleuze, Auteur ; Sylvie Durrieu, Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud
, Auteur ; Jean-Pierre Renaud
, Auteur
Année de publication : 2022 Article en page(s) : n° 103072 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] gestion forestière
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] Sologne (France)
[Termes IGN] variogramme
[Termes IGN] volume en boisRésumé : (auteur) The French National Forest Inventory provides detailed forest information up to large national and regional scales. Forest inventory for small areas of interest within a large population is equally important for decision making, such as for local forest planning and management purposes. However, sampling these small areas with sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of subpopulation with the help of auxiliary information that compensates for the small field samples. Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated with GEDI footprints create important challenges for their use for small area estimations. In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary information from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the distance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest volume estimates. Numéro de notice : A2022-786 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.103072 Date de publication en ligne : 22/10/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101890
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103072[article]Mapping monthly population distribution and variation at 1-km resolution across China / Zhifeng Cheng in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Mapping monthly population distribution and variation at 1-km resolution across China Type de document : Article/Communication Auteurs : Zhifeng Cheng, Auteur ; Jianghao Wang, Auteur ; Yong Ge, Auteur Année de publication : 2022 Article en page(s) : pp 1166 - 1184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse spatiale
[Termes IGN] autocorrélation spatiale
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] distribution spatiale
[Termes IGN] figuration de la densité
[Termes IGN] krigeage
[Termes IGN] population
[Termes IGN] série temporelle
[Termes IGN] téléphonie mobileRésumé : (auteur) Fine-grained inner-annual population data are instrumental in climate change response, resource allocation, and epidemic control. However, such data are currently scarce due to the lack of human-related indicators with both high temporal resolution and long-term coverage that can be used in the process of population spatialization. Here, we estimate monthly 1-km gridded population distribution across China in 2015 using time-series mobile phone positioning data. We construct a hybrid downscaling model to map the gridded population by incorporating random forest and area-to-point kriging. The estimated monthly population products appear to capture inner-annual population variations, especially during special periods, such as the festival, holiday, and short-term labor flow period, which are characterized by large-scale population movements. Additionally, compared with census data, the hybrid model-based results obtained exhibit higher consistency than popular global population products across all spatial extents. Our monthly 1-km data products for the population distribution across China in 2015 provide a credible dataset that can be employed in studies aimed at accurate population-dependent decisions. Numéro de notice : A2022-407 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1854767 Date de publication en ligne : 07/12/2020 En ligne : https://doi.org/10.1080/13658816.2020.1854767 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100724
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1166 - 1184[article]Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data / Santanu Malik in Geocarto international, vol 37 n° 8 ([01/05/2022])
![]()
[article]
Titre : Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data Type de document : Article/Communication Auteurs : Santanu Malik, Auteur ; Tridip Bhowmik, Auteur ; Umesh Mishra, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2198 - 2214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'occupation du sol
[Termes IGN] estimation bayesienne
[Termes IGN] géostatistique
[Termes IGN] gestion durable
[Termes IGN] Inde
[Termes IGN] krigeage
[Termes IGN] modèle de simulation
[Termes IGN] puits de carbone
[Termes IGN] régression
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sol arableRésumé : (auteur) Prediction and accurate digital soil mapping (DSM) of soil organic carbon (SOC) at a local scale is a key factor for any agro-ecological modelling. This study aims to use remote sensing and terrain derivatives to provide a reliable method for SOC prediction. An advanced geostatistical-based empirical Bayesian Kriging regression (EBKR) method was used and performance was compared with the artificial neural network (ANN) and hybrid ANN, i.e. ANN-OK (ordinary kriging) and ANN-CK (cokriging). The result showed that the hybrid ANN model performs better than ANN, whereas the EBKR method outperforms all other methods with the highest R2 of 0.936. The DSM map shows that the highest SOC concentration was found in easternmost part of the study area with grass and agricultural land. This work shows the robustness of the EBKR prediction method over other techniques. The study will also aid the policymakers in adopting sustainable land use management. Numéro de notice : A2022-505 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1815864 Date de publication en ligne : 24/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1815864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101026
in Geocarto international > vol 37 n° 8 [01/05/2022] . - pp 2198 - 2214[article]Mapping forest site quality at national level / Ana Aguirre in Forest ecology and management, vol 508 (March-15 2022)
![]()
[article]
Titre : Mapping forest site quality at national level Type de document : Article/Communication Auteurs : Ana Aguirre, Auteur ; Daniel Moreno-Fernández, Auteur ; Iciar A. Alberdi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120043 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] autocorrélation spatiale
[Termes IGN] carte forestière
[Termes IGN] climat local
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Espagne
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] krigeage
[Termes IGN] modèle numérique
[Termes IGN] sécheresse
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Determining site quality is essential in order to develop sustainable forest management, allowing more appropriate silvicultural decisions to be made. However, most studies carried out in Spain have focused on a few species and at local scale, which makes it difficult to apply the findings or conduct studies at larger scales. The aim of this study is to obtain a site quality map at national scale for the main forest species (Pinus sylvestris, Pinus uncinata, Pinus pinea, Pinus halepensis, Pinus nigra, Pinus pinaster, Pinus canariensis, Pinus radiata, Abies alba, Juniperus thurifera, Quercus robur, Querus petraea, Quercus pyrenaica, Quercus faginea, Quercus ilex, Quercus suber, Populus nigra, Eucalyptus globulus, Eucalyptus camaldulensis, Fagus sylvatica, Castanea sativa, Quercus pubescens, Populus × canadensis, Betula alba). National Forest Inventory (NFI) data has been used to develop site quality models using the site form (SF) concept (dominant height- dominant diameter relationship). Universal Kriging techniques have been used to identify both the geographical trend linked to site factors (climatic, soil and physiographic variables) and their spatial autocorrelation to estimate the SF for every species. Finally, the information was interpolated for each tile of the Spanish National Forest Map in which the species considered was present, thus obtaining a SF national map for each species. The results reveal biologically consistent SF models, indicating that both NFI data and SF are suitable for studying site quality at national level. The variables used differ among the species analyzed, altitude being the most important variable for estimating SF models, while aridity and soil variables are less important. The results obtained could provide an important tool for forest managers working at national level with the main forest species in Spain. This methodology could be used for larger areas, such as at European level, and would allow some species to be analyzed at larger scales. Numéro de notice : A2022-161 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.foreco.2022.120043 Date de publication en ligne : 25/01/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120043 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99780
in Forest ecology and management > vol 508 (March-15 2022) . - n° 120043[article]Introduction à la géomatique pour le statisticien : quelques concepts et outils innovants de gestion, traitement et diffusion de l’information spatiale / François Sémécurbe (2022)
![]()
Titre : Introduction à la géomatique pour le statisticien : quelques concepts et outils innovants de gestion, traitement et diffusion de l’information spatiale Type de document : Guide/Manuel Auteurs : François Sémécurbe, Auteur ; Elise Coudin, Auteur Editeur : Paris : Institut National de la Statistique et des Etudes Economiques INSEE Année de publication : 2022 Collection : Documents de travail num. 2022-01 Importance : 66 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte interactive
[Termes IGN] cartographie dynamique
[Termes IGN] cartographie thématique
[Termes IGN] données spatiotemporelles
[Termes IGN] données vectorielles
[Termes IGN] GeoServer
[Termes IGN] géostatistique
[Termes IGN] PostGIS
[Termes IGN] Python (langage de programmation)
[Termes IGN] R (langage)
[Termes IGN] stockage de données
[Termes IGN] système d'information géographique
[Termes IGN] traitement de données localiséesRésumé : (éditeur) Ce document vise une présentation simple à l’attention des statisticiens des outils géomatiques récents qui permettent de stocker, traiter et diffuser l’information spatiale. Les logiciels comme R ou Python intègrent désormais les caractéristiques géographiques rendant plus accessibles leur traitement. Pour autant, le foisonnement des technologies, les possibilités offertes par le web, les technologies web, sont autant d’obstacles à dépasser pour celles et ceux souhaitant réaliser des cartographies thématiques percutantes. Ce document propose une présentation unifiée des concepts géomatiques, avec des extraits de code en R, Python et PostGIS. Il se concentre sur les données vectorielles et décrit les traitements et manipulations classiques à connaître pour construire une statistique spatiale. Il aborde aussi les outils et les flux permettant une diffusion dynamique (cartes interactives) de l’information spatiale. Il discute enfin le rôle de la spatialisation dans la représentation des données statistiques. Note de contenu : Introduction
1- Les données spatiales
2- Traitement des données spatiales
3- Diffusion dynamique de l'information spatiale
Discussion : le territoire des statisticiensNuméro de notice : 28651 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Guide DOI : sans En ligne : https://www.insee.fr/fr/statistiques/6049652 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99778 Spatial distribution of lead (Pb) in soil: a case study in a contaminated area of the Czech Republic / Nicolas Francos in Geomatics, Natural Hazards and Risk, vol 13 (2022)
PermalinkPermalinkSurface modelling of forest aboveground biomass based on remote sensing and forest inventory data / Xiaofang Sun in Geocarto international, vol 36 n° 14 ([01/08/2021])
PermalinkRapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)
PermalinkRépartitions spatiale et temporelle des feux à Madagascar / Solofo Rakotondraompiana in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkSpace-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
PermalinkPermalinkThe effect of different sampling schemes on estimation precision of snow water equivalent (SWE) using geostatistics techniques in a semi-arid region of Iran / Hojatolah Ganjkhanlo in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkGeostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier / Simone Baffelli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkMining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkA spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkPredictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax / Jose Morales in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
PermalinkSpatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships / Chao Song in Annals of GIS, vol 26 n° 3 (July 2020)
PermalinkA web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
PermalinkA citSci approach for rapid earthquake intensity mapping: a case study from Istanbul (Turkey) / Ilyas Yalcin in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkA spatio-temporal deformation model for laser scanning point clouds / Corinna Harmening in Journal of geodesy, vol 94 n°2 (February 2020)
PermalinkPermalinkDevelopment of a GIS and model-based method for optimizing the selection of locations for drinking water extraction by means of riverbank filtration / Yan Zhou (2020)
PermalinkSpatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods / Wolfgang B. Hamer in ISPRS International journal of geo-information, Vol 9 n° 1 (January 2020)
PermalinkDéveloppement d’un « ModelBuilder » pour l’évaluation de la recharge nette : cas de la nappe phréatique de Zéramdine Beni Hassène (Tunisie) / Imen Hentati in Géomatique expert, n° 128 (juin - juillet 2019)
PermalinkA new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
PermalinkEmbedding road networks and travel time into distance metrics for urban modelling / Henry Crosby in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
PermalinkEvidence of climate effects on the height-diameter relationships of tree species / Mathieu Fortin in Annals of Forest Science, vol 76 n° 1 (March 2019)
PermalinkPermalinkHyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing / Minrui Zheng in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)
PermalinkAtmospheric artifacts correction with a covariance-weighted linear model over mountainous regions / Zhongbo Hu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkObject-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkKriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling / M. Ligas in Survey review, vol 50 n° 359 (March 2018)
PermalinkAn accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations / Mohamed Abdelazeem in Journal of applied geodesy, vol 12 n° 1 (January 2018)
PermalinkPermalinkLeveraging correlation across space and time to interpolate geophysical data via CoKriging / Sonja Pravilovic in International journal of geographical information science IJGIS, vol 32 n° 1-2 (January - February 2018)
PermalinkPermalinkObject-based superresolution land-cover mapping from remotely sensed imagery / Yuehong Chen in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
PermalinkPermalinkDEM generation from contours and a low-resolution DEM / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
PermalinkApplicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods / Fatemeh Falah in Geocarto international, vol 32 n° 10 (October 2017)
PermalinkDiscovering non-compliant window co-occurrence patterns / Reem Y. Ali in Geoinformatica, vol 21 n° 4 (October - December 2017)
PermalinkDetection of inconsistencies in geospatial data with geostatistics / Adriana Maria Rocha Trancoso Santos in Boletim de Ciências Geodésicas, vol 23 n° 2 (abr - jun 2017)
PermalinkA comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration / Milad Mahour in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
PermalinkToward optimum fusion of thermal hyperspectral and visible images in classification of urban area / Farhad Samadzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 4 (April 2017)
PermalinkDétermination pratique de modèles de géoïde et autres surfaces de référence altimétrique / Jean-Louis Carme in XYZ, n° 150 (mars - mai 2017)
PermalinkHow does spatial scale affect species richness modelling? A test using remote sensing data and geostatistics / M. Marcantonio in Annali di Botanica, vol 7 (2017)
PermalinkPermalinkA new climatology of maximum and minimum temperature (1951–2010) in the Spanish mainland: a comparison between three different interpolation methods / D. Peña-Angulo in International journal of geographical information science IJGIS, vol 30 n° 11-12 (November - December 2016)
PermalinkA spatial analysis of GEOID03 and GEOID09 in Connecticut / Kazi Arifuzzaman in Journal of applied geodesy, vol 10 n° 2 (June 2016)
PermalinkTree species identity mediates mechanisms of top soil carbon sequestration in a Norway spruce and European beech mixed forest / Enrique Andivia in Annals of Forest Science, vol 73 n° 2 (June 2016)
PermalinkRegional scale rain-forest height mapping using regression-kriging of spaceborne and airborne Lidar data: application on French Guiana / Ibrahim Fayad in Remote sensing, vol 8 n° 3 (March 2016)
PermalinkLa géostatistique : une vision novatrice au service des géosciences / Bernard Bourgine in Géosciences, n°20 (février 2016)
PermalinkPermalinkPermalinkPermalinkEstimation of precipitation fields from 1-minute rain gauge time series – comparison of spatial and spatio-temporal interpolation methods / D. Fitzner in International journal of geographical information science IJGIS, vol 29 n° 9 (September 2015)
PermalinkA robust fixed rank kriging method for improving the spatial completeness and accuracy of satellite SST products / Yuxin Zhu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
PermalinkFast subpixel mapping algorithms for subpixel resolution change detection / Qunming Wang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 4 (April 2015)
PermalinkUsing geographically weighted regression kriging for crop yield mapping in West Africa / Muhammad Imran in International journal of geographical information science IJGIS, vol 29 n° 2 (February 2015)
PermalinkApport de la géostatistique à l’estimation de la variabilité spatiale des tassements sous une plateforme ferroviaire : la plaine de Sebou (Maroc) / Mohamed Ben Haddou in Revue internationale de géomatique, vol 24 n° 4 (décembre 2014 - février 2015)
PermalinkGeostatistical estimation of signal-to-noise ratios for spectral vegetation indices / L. Ji in ISPRS Journal of photogrammetry and remote sensing, vol 96 (October 2014)
PermalinkAn across-country comparison of the hierarchical spatial structures of cities / Xintao Liu in Geomatica [en ligne], vol 68 n° 3 (September 2014)
PermalinkAnalyse du réseau de fractures extrait des images radar du socle précambrien de la région d'Oumé (Centre-Ouest de la Côte d'Ivoire) / Derving Baka in Photo interpretation, European journal of applied remote sensing, vol 50 n° 3 - 4 (septembre 2014)
PermalinkUrban land value maps : a methodological approach / Radoslaw Cellmer in Geodetski vestnik, vol 58 n° 3 ([01/09/2014])
PermalinkSpatial interpolation to predict missing attributes in GIS using semantic kriging / Shrutilipi Bhattacharjee in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)
PermalinkEvaluation de techniques d'interpolation spatiale de la piézométrie à l'aide de l'extension Geostatistical Analyst d'ArcGIS : Cas du système aquifère phréatique de Sfax (Tunisie) / Ibtissem Triki in Géomatique expert, n° 99 (01/07/2014)
PermalinkApport des images Landsat-7 ETM+ à l'étude structurale du socle archéen de Sansmélima (Sud Cameroun) / Joseph Martial Akame in Revue Française de Photogrammétrie et de Télédétection, n° 206 (Avril 2014)
PermalinkGeostatistical methods for predicting soil moisture continuously in a subalpine basin / Katherine E. Williams in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 4 (April 2014)
PermalinkStatistical data fusion of multi-sensor AOD over the Continental United States / Sweta Jinnagara Puttaswamy in Geocarto international, vol 29 n° 1 - 2 (February - April 2014)
PermalinkArea Sampling and Information Systems Applied to Land-Cover and Land-User. Case Study: Post-Communist Romania / Simona Niculescu in Revue Française de Photogrammétrie et de Télédétection, n° 205 (Janvier 2014)
PermalinkPermalinkA continuous velocity field for Norway / Halfdan Pascal Kierulf in Journal of geodesy, vol 87 n° 4 (April 2013)
PermalinkAssessment of regression kriging for spatial interpolation: comparisons of seven GIS interpolation methods / Qingmin Meng in Cartography and Geographic Information Science, vol 40 n° 1 (January 2013)
PermalinkPermalinkPermalinkAn adaptive method of non-stationary variogram modeling for DEM error surface simulation / Chuanfa Chen in Transactions in GIS, vol 16 n° 6 (December 2012)
PermalinkDesigning a 3D model for the prediction of the top of formation in oil fields using geostatistical methods / M. Abdideh in Geocarto international, vol 27 n° 7 (November 2012)
PermalinkSpatio-temporal MODIS EVI gap filling under cloud cover: An example in Scotland / L. Poggio in ISPRS Journal of photogrammetry and remote sensing, vol 72 (August 2012)
PermalinkPermalinkPermalinkUtilisation d'ArcGIS pour la production de livrables cartographiques dans le cadre d'un projet d'acquisition de connaissances sur les eaux souterraines / Jacques Gautier (2012)
PermalinkPotential of an ultraviolet, medium-footprint lidar prototype for retrieving forest structure / Tristan Allouis in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 supplement (December 2011)
PermalinkVisual comparison of moving-window kriging models / Urška Demšar in Cartographica, vol 46 n° 4 (December 2011)
PermalinkImproving the assessment of ICESat water altimetry accuracy accounting for autocorrelation / Hani Abdallah in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 6 (November 2011)
PermalinkTerrestrial laser scan error in the presence of dense ground vegetation / S. Coveney in Photogrammetric record, vol 26 n° 135 (September - November 2011)
PermalinkStreet-level spatial interpolation using network-based IDW and ordinary kriging / N. Shiode in Transactions in GIS, vol 15 n° 4 (August 2011)
PermalinkImage fusion by spatially adaptive filtering using downscaling cokriging / E. Pardo-Iguzquiza in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 3 (May - June 2011)
PermalinkTélédétection et salinité. Cartographie de la salinité des sols de la plaine algérienne du Bas-Chéliff / A. Douaoui in Géomatique expert, n° 76 (01/09/2010)
PermalinkEvaluating terrestrial water storage variations from regionally constrained GRACE mascon data and hydrological models over Southern Africa: preliminary results / P. Krogh in International Journal of Remote Sensing IJRS, vol 31 n° 14 (July 2010)
PermalinkExploring population spatial concentrations in Northern Ireland by community background and other characteristics: an application of geographically weighted spatial statistics / C.D. Lloyd in International journal of geographical information science IJGIS, vol 24 n°7-8 (july 2010)
PermalinkSpatial variability of soil nutrients and GIS-based nutrient management in Yongji County, China / Qian Zhang in International journal of geographical information science IJGIS, vol 24 n°7-8 (july 2010)
PermalinkEffects of topographic variability and Lidar sampling density on several DEM interpolation methods / Q. Guo in Photogrammetric Engineering & Remote Sensing, PERS, vol 76 n° 6 (June 2010)
PermalinkUsing landscape characteristics to define an adjusted distance metric for improving kriging interpolations / S. Lyon in International journal of geographical information science IJGIS, vol 24 n° 5-6 (may 2010)
PermalinkDetecting negative spatial autocorrelation in georeferenced random variables / Daniel A. Griffith in International journal of geographical information science IJGIS, vol 24 n°3-4 (march 2010)
PermalinkOptimization of mobile radioactivity monitoring networks / Gerard B.M. Heuvelink in International journal of geographical information science IJGIS, vol 24 n°3-4 (march 2010)
PermalinkAccuracy 2010 : Proceedings of the Ninth international symposium on spatial accuracy assessment in natural resources and environmental sciences, Leicester, UK, 20 - 23 juillet 2010 / Nicholas J. Tate (2010)
PermalinkSpatial interpolation in wireless sensor networks: localized algorithms for variogram modeling and kriging / M. Umer in Geoinformatica, vol 14 n° 1 (January 2010)
PermalinkFinding appropriate interpolation techniques for topographic surface generation for mudslide risk zonation / A. Vansarochana in Geocarto international, vol 24 n° 4 (August - September 2009)
PermalinkThe effects of quality control on decreasing error propagation in the LandScan USA population distribution model: a case study of Philadelphia County / L. Patterson in Transactions in GIS, vol 13 n° 2 (April 2009)
Permalink