Descripteur
Documents disponibles dans cette catégorie (953)


Etendre la recherche sur niveau(x) vers le bas
Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt Type de document : Article/Communication Auteurs : André Bertoncini, Auteur ; Caroline Aubry-Wake, Auteur ; John W. Pomeroy, Auteur Année de publication : 2022 Article en page(s) : n° 113101 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SRTM
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] montagne
[Termes IGN] neige
[Termes IGN] pouvoir de résolution radiométriqueRésumé : (auteur) Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches. Numéro de notice : A2022-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113101 Date de publication en ligne : 30/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100800
in Remote sensing of environment > vol 278 (September 2022) . - n° 113101[article]DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)
![]()
[article]
Titre : DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images Type de document : Article/Communication Auteurs : Yingjie Wang, Auteur ; Abdelaziz Kallel, Auteur ; Xuebo Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112973 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image à haute résolution
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de transfert radiatif
[Termes IGN] radiance
[Termes IGN] réflectance directionnelle
[Termes IGN] scène forestière
[Termes IGN] scène urbaineRésumé : (auteur) Accurate and efficient simulation of remote sensing images is increasingly needed in order to better exploit remote sensing observations and to better design remote sensing missions. DART (Discrete Anisotropic Radiative Transfer), developed since 1992 based on the discrete ordinates method (i.e., standard mode DART-FT), is one of the most accurate and comprehensive 3D radiative transfer models to simulate the radiative budget and remote sensing observations of urban and natural landscapes. Recently, a new method, called DART-Lux, was integrated into DART model to address the requirements of massive remote sensing data simulation for large-scale and complex landscapes. It is developed based on efficient Monte Carlo light transport algorithms (i.e., bidirectional path tracing) and on DART model framework. DART-Lux can accurately and rapidly simulate the bidirectional reflectance factor (BRF) and spectral images of arbitrary landscapes. This paper presents its theory, implementation, and evaluation. Its accuracy, efficiency and advantages are also discussed. The comparison with standard DART-FT in a variety of scenarios shows that DART-Lux is consistent with DART-FT (relative differences Numéro de notice : A2022-398 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112973 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112973 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100698
in Remote sensing of environment > vol 274 (June 2022) . - n° 112973[article]Vegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas / Benedikt Hiebl in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Vegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas Type de document : Article/Communication Auteurs : Benedikt Hiebl, Auteur ; Andreas Mayr, Auteur ; Andreas Kollert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 367 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] données de terrain
[Termes IGN] emissivité
[Termes IGN] flore alpine
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] modèle numérique de surface
[Termes IGN] montagne
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] variation saisonnièreRésumé : (auteur) Land Surface Temperature (LST) products from thermal infrared imaging rely on information about the spatial distribution of Land Surface Emissivity (LSE). For portable, broadband thermal cameras for drone- or ground-based measurements with camera to object distances up to a few kilometres and with meter-scale resolution, threshold-based retrieval of LSE from Fractional green Vegetation Cover (FVC) can be used. As seasonal changes in vegetation LSE over the year cannot be accounted for by single satellite images or aerial orthophotos, this study evaluates an approach for FVC retrieval via permanently installed RGB webcams and derived Excess Green vegetation index (ExG) time series at a high-mountain test site in the European Alps. Daily ExG values were derived from the imagery of 27 days between 12/07/2021 and 30/10/2021 and projected to a 0.5 m Digital Surface Model (DSM). FVC reference data from 765 in-situ vegetation plots were used to assess the relationship between ExG and the vegetation cover and to determine the thresholds of ExG for no vegetation cover and full vegetation cover. Despite the bad correlation between ExG and in-field FVC with an R² score of 0.15, an approach using a well-tested orthophoto-retrieved NDVI for FVC retrieval performs just slightly better. The comparison of the remotely sensed data and the field measurements therefore remains complex. Time series analysis of both ExG and FVC for highly vegetated areas showed a significant decrease from summer to autumn, which reflects the seasonal changes of LSE for senescent vegetation. Calculated emissivities for vegetated pixels ranged from the minimum of 0.95 to the maximum of 0.985 over the season, while emissivity values for less vegetated pixels stayed constant during the season. The results of this study will be used as input to a correction model for remote LST measurements in the context of micro-scale investigations of the thermal niche of Alpine flora. Numéro de notice : A2022-428 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-367-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-367-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100735
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 367 - 374[article]Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/05/2022])
![]()
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/05/2022] . - pp 1225 - 1236[article]Unmixing-based spatiotemporal image fusion accounting for complex land cover changes / Xiaolu Jiang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
![]()
[article]
Titre : Unmixing-based spatiotemporal image fusion accounting for complex land cover changes Type de document : Article/Communication Auteurs : Xiaolu Jiang, Auteur ; Bo Huang, Auteur Année de publication : 2022 Article en page(s) : n° 5623010 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] changement d'occupation du sol
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion d'images
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] réflectance spectrale
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) Spatiotemporal reflectance fusion has received considerable attention in recent decades. However, various challenges remain despite varying levels of success, especially regarding the recovery of spatial details with complex land cover changes. Taking the blending of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) images as an example, this article presents a locally weighted unmixing-based spatiotemporal image fusion model (LWU-STFM) that focuses on recovering complex land cover changes. The core idea is to redefine the land use class of each pixel featuring land cover change at the prediction date. The spatial unmixing process is enhanced using a proposed geographically spectrum-weighted regression (GSWR), and then, we optimize similar neighboring pixels for the final weighted-based prediction. Experiments are conducted using semisimulated and actual time-series Landsat–MODIS datasets to demonstrate the performance of the proposed LWU-STFM compared with the classic spatial and temporal adaptive reflectance fusion model (STARFM), flexible spatiotemporal data fusion (FSDAF), two enhanced FSDAF models (SFSDAF and FSDAF 2.0), and a virtual image pair-based spatiotemporal fusion model for spatial weighting (VIPSTF-SW). The results reveal that the proposed LWU-STFM outperforms the other five models with the best quantitative accuracy. In terms of the relative dimensionless global error (ERGAS) index, the errors of Landsat-like images generated using LWU-STFM are 2.8%–63.4% lower than those of other models. From visual comparisons, LWU-STFM predictions illustrate encouraging improvements in recovering spatial details of pixels with complex land cover changes in heterogeneous landscapes and, thus, advancing applications of spatiotemporal image fusion for continuous and fine-scale land surface monitoring. Numéro de notice : A2022-409 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3173172 Date de publication en ligne : 05/05/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3173172 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100744
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 5 (May 2022) . - n° 5623010[article]A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkAre northern German Scots pine plantations climate smart? The impact of large-scale conifer planting on climate, soil and the water cycle / Christoph Leuschner in Forest ecology and management, vol 507 (1 March 2022)
PermalinkFeasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques / J.O. Ondieki in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
PermalinkLand surface phenology retrieval through spectral and angular harmonization of Landsat-8, Sentinel-2 and Gaofen-1 data / Jun Lu in Remote sensing, vol 14 n° 5 (March-1 2022)
PermalinkA novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
PermalinkLandsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest / Ran Meng in Remote sensing of environment, vol 269 (February 2022)
PermalinkMapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery / Donato Morresi in Remote sensing of environment, vol 269 (February 2022)
PermalinkSpatiotemporal fusion modelling using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria / Maninder Singh Dhillon in Remote sensing, vol 14 n° 3 (February-1 2022)
PermalinkDetecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation / Guiming Zhang in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
PermalinkDetection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements / Xue Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
Permalink