Descripteur
Documents disponibles dans cette catégorie (230)



Etendre la recherche sur niveau(x) vers le bas
A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level / Laxmi Gupta in Journal of maps, vol 18 n° 2 (February 2023)
![]()
[article]
Titre : A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level Type de document : Article/Communication Auteurs : Laxmi Gupta, Auteur ; Jagabandhu Dixit, Auteur Année de publication : 2023 Article en page(s) : 33 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] cartographie des risques
[Termes IGN] eau de surface
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] planification
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] ruissellement
[Termes IGN] système d'information géographique
[Termes IGN] vulnérabilitéRésumé : (auteur) Floods are frequently occurring events in the Assam region due to the presence of the Brahmaputra River and the heavy monsoon period. An efficient and reliable methodology is utilized to prepare a GIS-based flood risk map for the Assam region, India. At the regional and administrative level, the flood hazard index (FHI), flood vulnerability index (FVI), and flood risk index (FRI) are developed using multi-criteria decision analysis (MCDA) – analytical hierarchy process (AHP). The selected indicators define the topographical, geological, meteorological, drainage characteristics, land use land cover, and demographical features of Assam. The results show that more than 70%, 57.37%, and 50% of the total area lie in moderate to very high FHI, FVI, and FRI classes, respectively. The proposed methodology can be applied to identify high flood risk zones and to carry out effective flood risk management and mitigation strategies in vulnerable areas. Numéro de notice : A2023-054 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2060329 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2060329 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102387
in Journal of maps > vol 18 n° 2 (February 2023) . - 33 p.[article]Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 38 n° inconnu ([01/01/2023])
![]()
[article]
Titre : Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain Type de document : Article/Communication Auteurs : Arabinda Maiti, Auteur ; Prasenjit Acharya, Auteur ; Srikanta Sannigrahi, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] Gange (fleuve)
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] mousson
[Termes IGN] plaine
[Termes IGN] rizièreRésumé : (auteur) We proposed a modification of the existing approach for mapping active paddy rice fields in monsoon-dominated areas. In the existing PPPM approach, LSWI higher than EVI at the transplantation stage enables the identification of rice fields. However, it fails to recognize the fields submerged later due to monsoon floods. In the proposed approach (IPPPM), the submerged fields, at the maximum greenness time, were excluded for better estimation. Sentinel–2A/2B time-series images were used for the year 2018 to map paddy rice over the Lower Gangetic Plain (LGP) using Google earth engine (GEE). The overall accuracy (OA) obtained from IPPPM was 85%. Further comparison with the statistical data reveals the IPPPM underestimates (slope (β1) = 0.77) the total reported paddy rice area, though R2 remains close to 0.9. The findings provide a basis for near real-time mapping of active paddy rice areas for addressing the issues of production and food security. Numéro de notice : A2022-143 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2032396 En ligne : https://doi.org/10.1080/10106049.2022.2032396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99963
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach / Bowen Niu in Geocarto international, vol 38 n° 1 ([01/01/2023])
![]()
[article]
Titre : Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach Type de document : Article/Communication Auteurs : Bowen Niu, Auteur ; Quanlong Feng, Auteur ; Jianyu Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2164361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] déchet
[Termes IGN] fusion de données
[Termes IGN] image à très haute résolution
[Termes IGN] Inde
[Termes IGN] Mexique
[Termes IGN] urbanisationRésumé : (auteur) The urbanization worldwide leads to the rapid increase of solid waste, posing a threat to environment and people’s wellbeing. However, it is challenging to detect solid waste sites with high accuracy due to complex landscape, and very few studies considered solid waste mapping across multi-cities and in large areas. To tackle this issue, this study proposes a novel deep learning model for solid waste mapping from very high resolution remote sensing imagery. By integrating a multi-scale dilated convolutional neural network (CNN) and a Swin-Transformer, both local and global features are aggregated. Experiments in China, India and Mexico indicate that the proposed model achieves high performance with an average accuracy of 90.62%. The novelty lies in the fusion of CNN and Transformer for solid waste mapping in multi-cities without the need for pixel-wise labelled data. Future work would consider more sophisticated methods such as semantic segmentation for fine-grained solid waste classification. Numéro de notice : A2023-109 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2164361 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2164361 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102407
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2164361[article]Modelling evacuation preparation time prior to floods: A machine learning approach / R. Sreejith in Sustainable Cities and Society, vol 87 (December 2022)
![]()
[article]
Titre : Modelling evacuation preparation time prior to floods: A machine learning approach Type de document : Article/Communication Auteurs : R. Sreejith, Auteur ; K.R. Sinimole, Auteur Année de publication : 2022 Article en page(s) : n° 104257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] chronométrie
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de crise
[Termes IGN] inondation
[Termes IGN] Kerala (Inde ; état)
[Termes IGN] modèle de simulation
[Termes IGN] plan de prévention des risques
[Termes IGN] questionnaire
[Termes IGN] risque naturel
[Termes IGN] secours d'urgenceRésumé : (auteur) Flooding is a significant hazard responsible for substantial damage and risks to human life worldwide. Effective emergency evacuation to a safer location remains a concern even though the crisis can be predicted and warnings were given. During a calamity, most residents cannot quickly and securely flee. As it is crucial to start evacuation at the right time to have a safe evacuation, this study focuses on a machine learning-based model for predicting a household's evacuation preparation time in the incident of a flood. The study is based on the data collected from flood-affected people from Kerala, India, through a questionnaire. The study indicates that people's demographic, geographical and behavioural aspects, awareness of natural hazards and management are the critical components for improved emergency actions. Further, the article also analysed the characteristics of the respondents and successfully created clusters in which the respondents broadly belong, which will help the rescue team operationalize the evacuation process. Numéro de notice : A2022-819 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104257 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101986
in Sustainable Cities and Society > vol 87 (December 2022) . - n° 104257[article]Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])
![]()
[article]
Titre : Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India Type de document : Article/Communication Auteurs : Rabin Chakrabortty, Auteur ; Subodh Chandra Pal, Auteur ; Fatemeh Rezaie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6713 - 6735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] mousson
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau neuronal profond
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Flood-susceptibility mapping is an important component of flood risk management to control the effects of natural hazards and prevention of injury. We used a remote-sensing and geographic information system (GIS) platform and a machine-learning model to develop a flood susceptibility map of Kangsabati River Basin, India where flash flood is common due to monsoon precipitation with short duration and high intensity. And in this subtropical region, climate change’s impact helps to influence the distribution of rainfall and temperature variation. We tested three models-particle swarm optimization (PSO), an artificial neural network (ANN), and a deep-leaning neural network (DLNN)-and prepared a final flood susceptibility map to classify flood-prone regions in the study area. Environmental, topographical, hydrological, and geological conditions were included in the models, and the final model was selected based on the relations between potentiality of causative factors and flood risk based on multi-collinearity analysis. The model results were validated and evaluated using the area under receiver operating characteristic (ROC) curve (AUC), which is an indicator of the current state of the environment and a value >0.95 implies a greater risk of flash floods. The AUC values for ANN, DLNN, and PSO for training datasets were 0.914, 0.920, and 0.942, respectively. Among these three models, PSO showed the best performance with an AUC value of 0.942. The PSO approach is applicable for flood susceptibility mapping of the eastern part of India, a subtropical region, to allow flood mitigation and help to improve risk management in this region. Numéro de notice : A2022-750 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1953618 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1953618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101742
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6713 - 6735[article]Modelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model / Santanu Dinda in Geocarto international, vol 37 n° 22 ([10/10/2022])
PermalinkPrediction of suspended sediment concentration using hybrid SVM-WOA approaches / Sandeep Samantaray in Geocarto international, vol 37 n° 19 ([15/09/2022])
PermalinkTowards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping / Sandro Martinis in Remote sensing of environment, vol 278 (September 2022)
PermalinkQuantifying the influence of plot-level uncertainty in above ground biomass up scaling using remote sensing data in central Indian dry deciduous forest / Thangavelu Mayamanikandan in Geocarto international, vol 37 n° 12 ([01/07/2022])
PermalinkA second-order attention network for glacial lake segmentation from remotely sensed imagery / Shidong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
PermalinkA GIS-based approach for identification of optimum runoff harvesting sites and storage estimation: a study from Subarnarekha-Kangsabati Interfluve, India / Manas Karmakar in Applied geomatics, vol 14 n° 2 (June 2022)
PermalinkPhysical modelling of Nanda Devi National Park, a natural world heritage site, from GIS data / Sanat Agrawal in Cartographica, vol 57 n° 2 (Summer 2022)
PermalinkVariance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data / Anjana N.J. Kukunuri in Geocarto international, vol 37 n° 10 ([01/06/2022])
PermalinkAnalyzing spatio-temporal pattern of the forest fire burnt area in Uttarakhand using Sentinel-2 data / Shailja Mamgain in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkMapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data / Santanu Malik in Geocarto international, vol 37 n° 8 ([01/05/2022])
Permalink