Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > polarisation
polarisation |
Documents disponibles dans cette catégorie (151)



Etendre la recherche sur niveau(x) vers le bas
Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])
![]()
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1225 - 1236[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 SL Revue Centre de documentation Revues en salle Disponible A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lan Xun in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lan Xun, Auteur ; Jiahua Zhang, Auteur ; Dan Cao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie automatique
[Termes IGN] Chine
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] Gossypium (genre)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] polarisation
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelleRésumé : (auteur) Cotton is an important cash crop in the world, as the main source of natural and renewable fiber for textiles. Accurate and timely monitoring of the cotton distribution is crucial for cotton cultivation management and international trade. However, most of the previous researches on cotton identification using remotely sensed images are highly dependent on training samples, and the collection of samples is time-consuming and expensive. To overcome this limitation, a new index, termed as Cotton Mapping Index (CMI), was developed in this study for automatic cotton mapping using time series of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 Multispectral Instrument (MSI) satellite data. Four sites in the United States (U.S.) and four sites in China were selected to develop and assess the performance of the CMI. The spectral characteristics derived from Sentinel-2 and backscattering coefficients derived from Sentinel-1 for cotton and non-cotton crops during the cotton growth period were analyzed. Considering the phenology differences of crops in different regions, the features at an adaptive window were adopted to construct the CMI. The results showed that at the peak greenness period, the multiplication of red-edge 1 and red-edge 2 band for cotton samples were much larger than those for non-cotton samples, whereas the spectral angle at the red band as well as the absolute values of backscattering coefficients in vertical transmit and vertical receive (VV) polarization for cotton samples were much smaller than those for non-cotton samples. Based on these findings, the CMI was developed to identify cotton cultivated area within the cropland area. The overall accuracy of classification results for the sites in the U.S. was higher than 81.20%, and the mean relative error for the sites in Xinjiang of China was 26.69%. The CMI, which incorporated optical and radar features, had a better performance than the indices using optical features solely. The advantage of the CMI over supervised classifiers (i.e., k-nearest neighbors, support vector machine and random forest) is that no training samples are required. Moreover, the cotton distribution map can be obtained before the harvest using the CMI. These results indicated the potential of the CMI for cotton mapping. The applicability of CMI in other regions with different cropping systems and crop types needs to be further assessed in the future study. Numéro de notice : A2021-775 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.021 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98836
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 148 - 166[article]A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models Type de document : Article/Communication Auteurs : Victoria Sol Galligani, Auteur ; Die Wang, Auteur ; Paola Belen Corales, Auteur ; Catherine Prigent, Auteur Année de publication : 2021 Article en page(s) : pp 8968 - 8977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image GPM
[Termes IGN] image radar
[Termes IGN] latitude
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] nuage
[Termes IGN] polarisation
[Termes IGN] prévision météorologique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] reconstruction du signal
[Termes IGN] variation saisonnièreRésumé : (auteur) Microwave cloud polarized observations have shown the potential to improve precipitation retrievals since they are linked to the orientation and shape of ice habits. Stratiform clouds show larger brightness temperature (TB) polarization differences (PDs), defined as the vertically polarized TB (TBV) minus the horizontally polarized TB (TBH), with ~10 K PD values at 89 GHz due to the presence of horizontally aligned snowflakes, while convective regions show smaller PD signals, as graupel and/or hail in the updraft tend to become randomly oriented. The launch of the global precipitation measurement (GPM) microwave imager (GMI) has extended the availability of microwave polarized observations to higher frequencies (166 GHz) in the tropics and midlatitudes, previously only available up to 89 GHz. This study analyzes one year of GMI observations to explore further the previously reported stable relationship between the PD and the observed TBs at 89 and 166 GHz, respectively. The latitudinal and seasonal variability is analyzed to propose a cloud scattering polarization parameterization of the PD-TB relationship, capable of reconstructing the PD signal from simulated TBs. Given that operational radiative transfer (RT) models do not currently simulate the cloud polarized signals, this is an alternative and simple solution to exploit the large number of cloud polarized observations available. The atmospheric radiative transfer simulator (ARTS) is coupled with the weather research and forecasting (WRF) model, in order to apply the proposed parameterization to the RT simulated TBs and hence infer the corresponding PD values, which show to reproduce the observed GMI PDs well. Numéro de notice : A2021-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3049921 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3049921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98871
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 8968 - 8977[article]A deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
![]()
[article]
Titre : A deep translation (GAN) based change detection network for optical and SAR remote sensing images Type de document : Article/Communication Auteurs : Xinghua Li, Auteur ; Zhengshun Du, Auteur ; Yanyuan Huang, Auteur ; Zhenyu Tan, Auteur Année de publication : 2021 Article en page(s) : pp 14 - 34 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] détection de changement
[Termes IGN] image à très haute résolution
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] méthode robuste
[Termes IGN] polarisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal profond
[Termes IGN] zone d'intérêtRésumé : (Editeur) With the development of space-based imaging technology, a larger and larger number of images with different modalities and resolutions are available. The optical images reflect the abundant spectral information and geometric shape of ground objects, whose qualities are degraded easily in poor atmospheric conditions. Although synthetic aperture radar (SAR) images cannot provide the spectral features of the region of interest (ROI), they can capture all-weather and all-time polarization information. In nature, optical and SAR images encapsulate lots of complementary information, which is of great significance for change detection (CD) in poor weather situations. However, due to the difference in imaging mechanisms of optical and SAR images, it is difficult to conduct their CD directly using the traditional difference or ratio algorithms. Most recent CD methods bring image translation to reduce their difference, but the results are obtained by ordinary algebraic methods and threshold segmentation with limited accuracy. Towards this end, this work proposes a deep translation based change detection network (DTCDN) for optical and SAR images. The deep translation firstly maps images from one domain (e.g., optical) to another domain (e.g., SAR) through a cyclic structure into the same feature space. With the similar characteristics after deep translation, they become comparable. Different from most previous researches, the translation results are imported to a supervised CD network that utilizes deep context features to separate the unchanged pixels and changed pixels. In the experiments, the proposed DTCDN was tested on four representative data sets from Gloucester, California, and Shuguang village. Compared with state-of-the-art methods, the effectiveness and robustness of the proposed method were confirmed. Numéro de notice : A2021-574 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.007 Date de publication en ligne : 23/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98174
in ISPRS Journal of photogrammetry and remote sensing > vol 179 (September 2021) . - pp 14 - 34[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021091 SL Revue Centre de documentation Revues en salle Disponible 081-2021093 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
![]()
[article]
Titre : Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images Type de document : Article/Communication Auteurs : Majid Rahimzadegan, Auteur ; Arash Davari, Auteur ; Ali Sayadi, Auteur Année de publication : 2021 Article en page(s) : pp 649-660 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Microwave Scanning Radiometer
[Termes IGN] coefficient de corrélation
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] polarisation
[Termes IGN] réflectance du solRésumé : (Auteur) Soil moisture content (SMC), product of Advanced Microwave Scanning Radiometer 2 (AMSR2), is not at an adequate level of accuracy on a regional scale. The aim of this study is to introduce a simple method to estimate SMC while synergistically using AMSR2 and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements with a higher accuracy on a regional scale. Two MODIS products, including daily reflectance (MYD021) and nighttime land surface temperature (LST) products were used. In 2015, 1442 in situ SMC measurements from six stations in Iran were used as ground-truth data. Twenty models were evaluated using combinations of polarization index (PI), index of soil wetness (ISW), normalized difference vegetation index (NDVI), and LST. The model revealed the best results using a quadratic combination of PI and ISW, a linear form of LST, and a constant value. The overall correlation coefficient, root-mean-square error, and mean absolute error were 0.59, 4.62%, and 3.01%, respectively. Numéro de notice : A2021-673 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00085 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.20-00085 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98835
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 649-660[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible Variational bayesian compressive multipolarization indoor radar imaging / Van Ha Tang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
PermalinkEstimation of surface deformation due to Pasni earthquake using RADAR interferometry / Muhammad Ali in Geocarto international, vol 36 n° 14 ([01/08/2021])
PermalinkImproving urban land cover classification with combined use of Sentinel-2 and Sentinel-1 imagery / Bin Hu in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
PermalinkForest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method / Hongliang Lu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
PermalinkInversion of solar-induced chlorophyll fluorescence using polarization measurements of vegetation / Haiyan Yao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
PermalinkLeaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data / Vijay Pratap Yadav in Geocarto international, vol 36 n° 7 ([15/04/2021])
PermalinkON GLONASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP / Zheng Zhang in Journal of geodesy, vol 95 n° 3 (March 2021)
PermalinkMonitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
PermalinkPolarization of light reflected by grass: modeling using visible-sunlit areas / Bin Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
Permalink