Descripteur



Etendre la recherche sur niveau(x) vers le bas
A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 (March 2021)
![]()
[article]
Titre : A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar Type de document : Article/Communication Auteurs : Shoba Periasamy, Auteur ; Divya Senthil, Auteur ; Ramakrishnan S Shanmugam, Auteur Année de publication : 2021 Article en page(s) : pp 581 - 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Argile
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] constante diélectrique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] limon
[Termes descripteurs IGN] polarisation croisée
[Termes descripteurs IGN] rugosité du sol
[Termes descripteurs IGN] sable
[Termes descripteurs IGN] texture du solRésumé : (auteur) The present study investigates the potential of synthetic aperture radar in demonstrating the relative percentage of sand, silt and clay content in the soil. The contribution of vegetation and topography in the backscattering coefficient has been significantly reduced by employing the terrain correction model, dual polarized SAR vegetation index and water cloud model. The target parameters namely ‘Soil Roughness (hrms-soil)’ and ‘Dielectric Constant’ (ε′vv−soil ) has arrived from cross-polarization ratio and modified Dubois model. The extracted target parameters are sufficiently correlated with in situ sand (R2 = 0.81) and clay measurements (R2 = 0.78). The relative percentage of silt was mapped by the novel idea of performing the correlation analysis between hrms-soil and ε′vv−soil and thus represented the percentage of silt with reasonable accuracy (R2 = 0.77). From the soil triangle formed with three estimated target parameters, we found that the clay category has shared around 35% of the total area followed by sandy loam (23%). Numéro de notice : A2021-253 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618924 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618924 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97276
in Geocarto international > vol 36 n° 5 (March 2021) . - pp 581 - 598[article]Soil and vegetation scattering contributions in L-Band and P-Band polarimetric SAR observations / S. Hamed Alemohammad in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
![]()
[article]
Titre : Soil and vegetation scattering contributions in L-Band and P-Band polarimetric SAR observations Type de document : Article/Communication Auteurs : S. Hamed Alemohammad, Auteur ; Thomas Jagdhuber, Auteur ; Mahta Moghaddam, Auteur ; Dara Entekhabi, Auteur Année de publication : 2019 Article en page(s) : pp 8417 - 8429 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] bande P
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] constante diélectrique
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] micro-onde
[Termes descripteurs IGN] rugosité du sol
[Termes descripteurs IGN] teneur en eau de la végétationRésumé : (auteur) Active microwave-based retrieval of soil moisture in vegetated areas has uncertainties due to the sensitivity of the signal to both soil (dielectric constant and roughness) and vegetation (dielectric constant and structure) properties. A multi-frequency acquisition system would increase the number of observations that may constrain soil and/or vegetation parameter retrievals. In order to realize this constraint, an understanding of microwaves interaction with the surface and vegetation across frequencies is necessary. Different microwave frequencies have varied interactions with the soil-vegetation medium and increasing penetration into the soil and canopy with the decreasing frequency. In this study, we examine the contributions of different scattering mechanisms to coincident observations from two microwave frequencies (L and P) of airborne synthetic aperture radar instruments. We quantify contributions of surface, vegetation volume, and double-bounce scattering components. Results are analyzed and discussed to guide future multi-frequency retrieval algorithm designs. Numéro de notice : A2019-594 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2920995 date de publication en ligne : 27/06/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2920995 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94586
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8417 - 8429[article]Soil roughness retrieval from TerraSar-X data using neural network and fractal method / Mohammad Maleki in Advances in space research, vol 64 n°5 (1 September 2019)
![]()
[article]
Titre : Soil roughness retrieval from TerraSar-X data using neural network and fractal method Type de document : Article/Communication Auteurs : Mohammad Maleki, Auteur ; Jalal Amini, Auteur ; Claudia Notarnicola, Auteur Année de publication : 2019 Article en page(s) : pp 1117-1129 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse fractale
[Termes descripteurs IGN] bande X
[Termes descripteurs IGN] équation intégrale
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] modèle d'inversion
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] Perceptron multicouche
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] rugosité du solRésumé : (auteur) The purpose of this study is to estimate the surface roughness (rms) using TerraSar-X data in HH polarization. Simulation of data is carried out at a wide range of moisture and roughness using the Integral Equation Model (IEM). The inversion method is based on Multi-Layer Perceptron neural network. Inversion technique is performed in two steps. In the first step, the neural network is trained using synthetic data. The inputs of the first neural network are the backscattering coefficient and incidence angle, and the moisture is the output. In the next step, three neural networks are built based on a prior and without prior information on roughness. The inputs of three neural network are backscattering coefficient, estimated moisture in the first step and incidence angle and the roughness is output. The validation of the proposed methods is carried out based on synthetic and real data. Ground roughness measurements are extracted from Digital Terrain Model (DTM) using the fractal method. The accuracy of moisture from synthetic data is 6.1 vol% without prior information on moisture and roughness. The roughness (rms) accuracy of synthetic datasets is 0. 61 cm without prior information and is 0.31 cm and 0.38 cm for rms lower than 2 cm and rms between 2 and 4 cm, with prior information on roughness. The result's analysis of the simulated data showed that the prior information on roughness strongly improves the accuracy of roughness and moisture estimates. The accuracy of rms estimates for the TerraSar-X image in the HH polarization is about 0.9 cm in the case of no prior information on roughness. The accuracy improves to 0.57 cm for rms lower than 2 cm and 0.54 cm for rms between 2 and 4 cm with prior information on roughness. An overestimation of rms for rms lower than 2 cm and an underestimation of rms for rms higher than 2 cm are observed. The results of the accuracy of the synthetic and real data showed that the X band in HH polarization has a very good potential to estimate the soil roughness. Numéro de notice : A2019-411 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2019.04.019 date de publication en ligne : 24/04/2019 En ligne : https://doi.org/10.1016/j.asr.2019.04.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93527
in Advances in space research > vol 64 n°5 (1 September 2019) . - pp 1117-1129[article]Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth / Sébastien Labarre in Remote sensing of environment, vol 225 (May 2019)
![]()
[article]
Titre : Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth Type de document : Article/Communication Auteurs : Sébastien Labarre, Auteur ; Stéphane Jacquemoud, Auteur ; Cécile Ferrari, Auteur ; Arthur Delorme, Auteur ; Allan Derrien, Auteur ; Raphaël Grandin, Auteur ; Mohamed Jalludin, Auteur ; F. LemaÎtre, Auteur ; Marianne Metois, Auteur ; Marc Pierrot-Deseilligny , Auteur ; Ewelina Rupnik
, Auteur ; Bernard Tanguy, Auteur
Année de publication : 2019 Projets : CAROLInA / Jacquemoud, Stéphane Article en page(s) : pp 1 - 15 Note générale : Bibliographie
The PhD thesis of Sébastien Labarre was funded by the Direction générale de l'armement (DGA) and by the Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Field data were acquired in the frame of the CAROLInA (Characterization of Multi-Scale Roughness using OpticaL ImAgery) project funded by CNES.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Djibouti
[Termes descripteurs IGN] goniomètre
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image Pléiades-HR
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réflectance du sol
[Termes descripteurs IGN] rugosité du sol
[Termes descripteurs IGN] sol nuRésumé : (Auteur) Surface roughness can be defined as the mean slope angle integrated over all scales from the grain size to the local topography. It controls the energy balance of bare soils, in particular the angular distribution of scattered and emitted radiation. This provides clues to understand the intimate structure and evolution of planetary surfaces over ages. In this article we investigate the capacity of the Hapke photometric model, the most widely used in planetary science, to retrieve surface roughness from multiangular reflectance data. Its performance is still a question at issue and we lack validation experiments comparing model retrievals with ground measurements. To address this issue and to show the potentials and limits of the Hapke model, we compare the mean slope angle determined from very high resolution digital elevation models of volcanic and sedimentary terrains sampled in the Asal-Ghoubbet rift (Republic of Djibouti), to the photometric roughness estimated by model inversion on multiangular reflectance data measured on the ground (Chamelon field goniometer) and from space (Pleiades images). The agreement is good on moderately rough surfaces, in the domain of validity of the Hapke model, and poor on others. Numéro de notice : A2019-154 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2019.02.014 date de publication en ligne : 02/03/2019 En ligne : https://doi.org/10.1016/j.rse.2019.02.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92492
in Remote sensing of environment > vol 225 (May 2019) . - pp 1 - 15[article]Estimation of surface roughness over bare agricultural soil from Sentinel-1 data / Mohammad Choker (2018)
![]()
contenu dans HAL Hyper articles en ligne / Centre pour la Communication Scientifique Directe CCSD (2000)
Titre : Estimation of surface roughness over bare agricultural soil from Sentinel-1 data Type de document : Thèse/HDR Auteurs : Mohammad Choker, Auteur ; Nicolas Baghdadi, Directeur de thèse ; Mehrez Zribi, Directeur de thèse Editeur : AgroParisTech Année de publication : 2018 Importance : 214 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Institut des Sciences et Industries du Vivant et de l'Environnement, AgroParisTech, GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] écho radar
[Termes descripteurs IGN] état de surface du sol
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image Cosmo-Skymed
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] modèle de rétrodiffusion
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] rugosité du sol
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] télédétection en hyperfréquenceRésumé : (auteur) Spatial remote sensing is of paramount importance for mapping and monitoring environmental problems. Its interest lies in the ability of space satellite sensors in providing permanent information of the planet, at local, regional and global scales. Also, it provides spatial and repetitive territories visions and ecosystem views. Radar remote sensing has shown great potential in recent years for the characterization of soil surface conditions. The state of the soil surface, in particular moisture and roughness, has a fundamental influence on the distribution of rainfall between infiltration, surface retention and runoff. In addition, it plays an essential role in surface hydrological processes and those associated with erosion and evapotranspiration processes. Characterization and consideration of these surface conditions have been recently considered as an important issue for physically based modeling of hydrological processes or for surface-atmosphere coupling. In this context and for several years, several scientific studies have shown the potential of active microwave data for estimation of the soil moisture and the surface roughness.New SAR (Synthetic Aperture Radar) systems have opened new perspectives for earth observation through improved spatial resolution (metric on TerraSAR-X and COSMO-SkyMed) and temporal resolution (TerraSAR-X, COSMO-SkyMed, Sentinel-1) . The recent availability of new Sentinel-1 C-band radar sensors (free and open access) makes it essential to evaluate the potential of Sentinel-1 data for the characterization of soil surface conditions and in particular surface roughness.The work revolves around three parts. The first part consist of evaluation of the most used radar backscattering models (IEM, Oh, Dubois, and AIEM) using a wide dataset of SAR data and experimental soil measurements. This evaluation gives the ability to find the most robust backscattering model that simulates the radar signal with good agreement in order to use later in the inversion procedure of the radar signal for estimating the soil roughness. The second research axe of this thesis consists of proposing an empirical radar backscattering model for HH, HV and VV polarizations. This new model will be developed using a large real dataset. This new model also will be used in the inversion procedure of the radar signal for estimating the soil roughness. The last axe of this thesis consists of producing a method to invert the radar signal using neural networks. The objective is to evaluate the potential of Sentinel-1 data for estimating surface roughness. These neural networks will be trained using wide synthetic dataset produced from the radar backscattering models chosen (IEM calibrated by Baghdadi and the new proposed model) and validated using two datasets: one synthetic dataset and one real (Sentinel 1 images and in-situ measurements). The real datasets are collected from Tunisia (Kairouan) and France (Versailles). Note de contenu : 1- Introduction
2- Generalities
3- Evaluation of radar backscattering models
4- A new empirical model for radar scattering from bare soil surfaces
5- Estimation of soil roughness using neural networks from sentinel-1 SAR data
6- General conclusion and perspectivesNuméro de notice : 25595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géomatique : Paris : 2018 Organisme de stage : TETIS (Montpellier) DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02293194/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95218 Fusing microwave and optical satellite observations to simultaneously retrieve surface soil moisture, vegetation water content, and surface soil roughness / Yohei Sawada in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
PermalinkGlobal sensitivity analysis of the L-MEB model for retrieving soil moisture / Zengyan Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
PermalinkLiDAR-derived surface roughness texture mapping: Application to mount St. Helens Pumice Plain deposit analysis / Patrick L. Whelley in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 2 (January 2014)
PermalinkAccurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z) / Dimitri Lague in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)
PermalinkEvaluating an improved parameterization of the soil emission in L-MEB / Jean-Pierre Wigneron in IEEE Transactions on geoscience and remote sensing, vol 49 n° 4 (April 2011)
PermalinkPhysical limitations on detecting tunnels using underground-focusing spotlight synthetic aperture radar / J. Martinez-Lorenzo in IEEE Transactions on geoscience and remote sensing, vol 49 n° 1 Tome 1 (January 2011)
PermalinkAssessment of erosion, deposition and rill development on irregular soil surfaces using close range digital photogrammetry / G. Gessesse in Photogrammetric record, vol 25 n° 131 (September - November 2010)
PermalinkInfluence of macroscale and microscale surface roughness on multi-beam RADARSAT-1 data: implications for geological mapping in the Curaçá Valley, Brazil / W.R. Paradella in Photo interpretation, European journal of applied remote sensing, vol 45 n° 2 (juin 2009)
PermalinkA method for soil moisture estimation in Western Africa based on the ERS scatterometer / Mehrez Zribi in IEEE Transactions on geoscience and remote sensing, vol 46 n° 2 (February 2008)
PermalinkRetrieval of surface roughness using multi-polarized Envisat-1 ASAR data / H.s Srivastava in Geocarto international, vol 23 n° 1 (February - March 2008)
Permalink