Descripteur
Termes descripteurs IGN > 1- Outils - instruments et méthodes > Instrument > capteur (télédétection) > radar
radarSynonyme(s)radio Detection and Ranging |



Etendre la recherche sur niveau(x) vers le bas
Passive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Passive radar imaging of ship targets with GNSS signals of opportunity Type de document : Article/Communication Auteurs : Debora Pastina, Auteur ; Fabrizio Santi, Auteur ; Federica Pieralice, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2627 - 2742 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] capteur passif
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] cible mobile
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image radar
[Termes descripteurs IGN] navigation maritime
[Termes descripteurs IGN] navire
[Termes descripteurs IGN] radar bistatique
[Termes descripteurs IGN] signal GNSS
[Termes descripteurs IGN] télédétection spatialeRésumé : (Auteur) This article explores the possibility to exploit global navigation satellite systems (GNSS) signals to obtain radar imagery of ships. This is a new application area for the GNSS remote sensing, which adds to a rich line of research about the alternative utilization of navigation satellites for remote sensing purposes, which currently includes reflectometry, passive radar, and synthetic aperture radar (SAR) systems. In the field of short-range maritime surveillance, GNSS-based passive radar has already proven to detect and localize ship targets of interest. The possibility to obtain meaningful radar images of observed vessels would represent an additional benefit, opening the doors to noncooperative ship classification capability with this technology. To this purpose, a proper processing chain is here conceived and developed, able to achieve well-focused images of ships while maximizing their signal-to-background ratio. Moreover, the scaling factors needed to map the backscatter energy in the range and cross-range domain are also analytically derived, enabling the estimation of the length of the target. The effectiveness of the proposed approach at obtaining radar images of ship targets and extracting relevant features is confirmed via an experimental campaign, comprising multiple Galileo satellites and a commercial ferry undergoing different kinds of motion. Numéro de notice : A2021-218 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3005306 date de publication en ligne : 16/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3005306 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97210
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2627 - 2742[article]Fusion of ground penetrating radar and laser scanning for infrastructure mapping / Dominik Merkle in Journal of applied geodesy, vol 15 n° 1 (January 2021)
![]()
[article]
Titre : Fusion of ground penetrating radar and laser scanning for infrastructure mapping Type de document : Article/Communication Auteurs : Dominik Merkle, Auteur ; Carsten Frey, Auteur ; Alexander Reiterer, Auteur Année de publication : 2021 Article en page(s) : pp 31 - 45 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Vedettes matières IGN] Topographie
[Termes descripteurs IGN] base de données localisées 3D
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] espace de Hilbert
[Termes descripteurs IGN] lasergrammétrie
[Termes descripteurs IGN] lever souterrain
[Termes descripteurs IGN] radar pénétrant GPR
[Termes descripteurs IGN] radargrammétrie
[Termes descripteurs IGN] réseau technique souterrain
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] sous-sol
[Termes descripteurs IGN] surface du sol
[Termes descripteurs IGN] système de numérisation mobileRésumé : (auteur) Mobile mapping vehicles, equipped with cameras, laser scanners (in this paper referred to as light detection and ranging, LiDAR), and positioning systems are limited to acquiring surface data. However, in this paper, a method to fuse both LiDAR and 3D ground penetrating radar (GPR) data into consistent georeferenced point clouds is presented, allowing imaging both the surface and subsurface. Objects such as pipes, cables, and wall structures are made visible as point clouds by thresholding the GPR signal’s Hilbert envelope. The results are verified with existing utility maps. Varying soil conditions, clutter, and noise complicate a fully automatized approach. Topographic correction of the GPR data, by using the LiDAR data, ensures a consistent ground height. Moreover, this work shows that the LiDAR point cloud, as a reference, increases the interpretability of GPR data and allows measuring distances between above ground and subsurface structures. Numéro de notice : A2021-044 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2020-0004 date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1515/jag-2020-0004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96771
in Journal of applied geodesy > vol 15 n° 1 (January 2021) . - pp 31 - 45[article]Application of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data / Mahdi Moalla in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
![]()
[article]
Titre : Application of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data Type de document : Article/Communication Auteurs : Mahdi Moalla, Auteur ; Hichem Frigui, Auteur ; Andrew Karem, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7022 - 7034 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] cible souterraine
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] données radar
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] mine antipersonnel
[Termes descripteurs IGN] radar pénétrant GPR
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] sous-solRésumé : (auteur) We propose discrimination algorithms for buried threat detection (BTD) that exploit deep convolutional neural networks (CNNs) and recurrent neural networks (RNN) to analyze 2-D GPR B-scans in the down-track (DT) and cross-track (CT) directions as well as 3-D GPR volumes. Instead of imposing a specific model or handcrafted features, as in most existing detectors, we use large real GPR data collections and data-driven approaches that learn: 1) features characterizing buried explosive objects (BEOs) in 2-D B-scans, both in the DT and CT directions; 2) the variation of the CNN features learned in a fixed 2-D view across the third dimension; and 3) features characterizing BEOs in the original 3-D space. The proposed algorithms were trained and evaluated using large experimental GPR data covering a surface area of 120 000 m 2 from 13 different lanes across two U.S. test sites. These data include a diverse set of BEOs consisting of varying shapes, metal content, and underground burial depths. We provide some qualitative analysis of the proposed algorithms by visually comparing their performance and consistency along different dimensions and visualizing typical features learned by some nodes of the network. We also provide quantitative analysis that compares the receiver operating characteristics (ROCs) obtained using the proposed algorithms with those obtained using existing approaches based on CNN as well as traditional learning. Numéro de notice : A2020-586 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2978763 date de publication en ligne : 25/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2978763 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95914
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7022 - 7034[article]Bistatic specular scattering measurements for the estimation of rice crop growth variables using fuzzy inference system at X-, C-, and L-bands / Ajeet Kumar Vishwakarma in Geocarto international, vol 35 n° 13 ([01/10/2020])
![]()
[article]
Titre : Bistatic specular scattering measurements for the estimation of rice crop growth variables using fuzzy inference system at X-, C-, and L-bands Type de document : Article/Communication Auteurs : Ajeet Kumar Vishwakarma, Auteur ; Rajendra Prasad, Auteur Année de publication : 2020 Article en page(s) : pp 1433 - 1449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] bande X
[Termes descripteurs IGN] biomasse
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] Inférence floue
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] Oryza (genre)
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] radar bistatique
[Termes descripteurs IGN] teneur en eau de la végétationRésumé : (auteur) Bistatic scatterometer measurements were performed on the rice crop-bed in the angular range of 20° to 60° for specular direction (ϕ=0) at X-, C- and L-bands for HH-, VV-, and HV-polarizations. The dominant scattering contribution to bistatic specular scattering coefficients (σ0) was analysed with the crop growth stages at various angle of incidence. The regression analysis showed high correlation between σ0 and crop growth variables at 40° angle of incidence for HH-polarization at X-band and for VV-polarization at C- and L-bands. The estimation of rice crop growth variables using subtractive clustering based fuzzy inference system (S-FIS) was done at 40° angle of incidence. The lower values of computed root mean square error (RMSE) between the observed and estimated values showed high potential of developed S-FIS model for the estimation of leaf area index for HH-polarisation at X-band, vegetation water content and fresh biomass for VV-polarization at C- and L-bands, respectively. Numéro de notice : A2020-608 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1576777 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1576777 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95969
in Geocarto international > vol 35 n° 13 [01/10/2020] . - pp 1433 - 1449[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020101 SL Revue Centre de documentation Revues en salle Disponible Background tropospheric delay in geosynchronous synthetic aperture radar / Dexin Li in Remote sensing, vol 12 n° 18 (September 2020)
![]()
[article]
Titre : Background tropospheric delay in geosynchronous synthetic aperture radar Type de document : Article/Communication Auteurs : Dexin Li, Auteur ; Xiaoxiang Zhu, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] compensation
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] modèle géométrique de prise de vue
[Termes descripteurs IGN] propagation troposphérique
[Termes descripteurs IGN] radar bistatique
[Termes descripteurs IGN] retard troposphérique
[Termes descripteurs IGN] synchronisationRésumé : (auteur) Spaceborne synthetic aperture radar (SAR) has been treated as a weather independent system for a long time. However, with the development of advanced SAR configurations, e.g., high resolution, bistatic, geosynchronous (GEO), the influence of tropospheric propagation error, which strongly depends on the weather, has begun to receive attention. In this paper, we focus on the effect of deterministic background tropospheric delay (BTD) during the image formation of GEO SAR. First, the decorrelation problems caused by the spatial variation and BTD are presented. Second, by combining with the SAR imaging geometry, the BTD error is decomposed as constant error, spatially variant error, and time variant error, the influences of which are analyzed under different circumstances. Third, an imaging method starting from the meteorological parameters and the GEO SAR systematic parameters is proposed to deal with the decorrelation problems. Finally, simulations with the dot-matrix targets are performed to validate the imaging method. Numéro de notice : A2020-632 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183081 date de publication en ligne : 20/09/2020 En ligne : https://doi.org/10.3390/rs12183081 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96053
in Remote sensing > vol 12 n° 18 (September 2020) . - 21 p.[article]A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images / David Pirrone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkTephra mass eruption rate from ground-based X-band and L-band microwave radars during the November 23, 2013, Etna Paroxysm / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkAdaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation / Deliang Xiang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkComparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series / Zhao Li in Journal of geodesy, vol 94 n°4 (April 2020)
PermalinkA Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkExtracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
PermalinkSmoothing and predicting celestial pole offsets using a Kalman filter and smoother / Jolanta Nastula in Journal of geodesy, Vol 94 n°3 (March 2020)
PermalinkApport des mesures du radar à synthèse d'ouverture de Sentinel-1 pour l'étude des propriétés du manteau neigeux / Gaëlle Veyssière (2019)
PermalinkPermalinkEarth observation, remote sensing and geoscientific ground investigations for archaeological and heritage research / Deodato Tapete (2019)
Permalink