Descripteur
Termes descripteurs IGN > sciences humaines et sociales
sciences humaines et socialesSynonyme(s)sciences de l'homme et de la société |


Etendre la recherche sur niveau(x) vers le bas
Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model / Yizhuo Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model Type de document : Article/Communication Auteurs : Yizhuo Li, Auteur ; Teng Fei, Auteur ; Yingjing Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 227 - 249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] détection de visage
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] émotion
[Termes descripteurs IGN] entropie
[Termes descripteurs IGN] psychologie
[Termes descripteurs IGN] reconnaissance faciale
[Termes descripteurs IGN] sciences humaines
[Termes descripteurs IGN] visionRésumé : (auteur) Human emotion is an intrinsic psychological state that is influenced by human thoughts and behaviours. Human emotion distribution has been regarded as an important part of emotional geography research. However, it is difficult to form a global scaled map reflecting human emotions at the same sampling density because various emotional sampling data are usually positive occurrences without absence data. In this study, a methodological framework for mapping the global geographic distribution of human emotion is proposed and applied, combining a species distribution model with physical environment factors. State-of-the-art affective computing technology is used to extract human emotions from facial expressions in Flickr photos. Various human emotions are considered as different species to form their ‘habitats’ and predict the suitability, termed as ‘Emotional Habitat’. To our knowledge, this framework is the first method to predict emotional distribution from an ecological perspective. Different geographic distributions of seven dimensional emotions are explored and depicted, and emotional diversity and abnormality are detected at the global scale. These results confirm the effectiveness of our framework and offer new insights to understand the relationship between human emotions and the physical environment. Moreover, our method facilitates further rigorous exploration in emotional geography and enriches its content. Numéro de notice : A2021-037 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1755040 date de publication en ligne : 24/04/2020 En ligne : https://doi.org/10.1080/13658816.2020.1755040 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96746
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 227 - 249[article]Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]A GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand / Narissara Nuthammachot in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : A GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand Type de document : Article/Communication Auteurs : Narissara Nuthammachot, Auteur ; Dimitris Stratoulias, Auteur Année de publication : 2021 Article en page(s) : pp 212 - 225 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] climat
[Termes descripteurs IGN] forêt marécageuse
[Termes descripteurs IGN] historique des données
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] outil d'aide à la décision
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] processus d'analyse hiérarchisée
[Termes descripteurs IGN] Thaïlande
[Termes descripteurs IGN] tourbièreRésumé : (auteur) Forest fires are abrupt transformations of the natural ecosystem and management authorities are required to take preventive measures to tackle fire events. Geographic information system (GIS) is a powerful tool for providing information with a spatial context and analytical hierarchy process (AHP) is a well-established technique for multiple criteria decision making. In this study, GIS and AHP are combined to analyse seven fire-related factors related to climate, topography and human influence. Fire risk for a peat swamp forested area in Kuan Kreng, Nakorn Sri Thammarat province, Thailand is estimated in five categories. 705 historic fire events from 2006 to 2017 are used to validate our approach. 82% of the historic fire incidents occurred within the highest fire risk class categories while only a few omission errors were recorded. The combined approach of GIS and AHP techniques can yield useful fire risk maps, which can consequently be used for future planning and management of fire prone areas. Numéro de notice : A2021-083 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1611946 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1611946 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96832
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 212 - 225[article]Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data / Yunhao Zheng in Computers, Environment and Urban Systems, vol 85 (January 2021)
![]()
[article]
Titre : Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data Type de document : Article/Communication Auteurs : Yunhao Zheng, Auteur ; Naixia Mou, Auteur ; Lingxian Zhang, Auteur Année de publication : 2021 Article en page(s) : n° 101561 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] accès aux données localisées
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] climat
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] géomercatique
[Termes descripteurs IGN] GeoWeb
[Termes descripteurs IGN] ressources web
[Termes descripteurs IGN] Scandinavie
[Termes descripteurs IGN] tourisme
[Termes descripteurs IGN] voyage
[Termes descripteurs IGN] zone boréaleRésumé : (auteur) Geo-located travel blogs, a new data source, enable to achieve more detailed analysis of tourists' spatio-temporal behavior. Taking Chinese tourists in Nordic countries as the research object, this paper focuses on their behavior, seasonal patterns and complex network effects by using geo-located travel blog data collected from Qunar.com. The results show that: (1) Chinese tourists visiting Nordic countries are often experienced in traveling. The local climate during the cold season does not prevent them from pursuing the aurora scenery. (2) The travel behavior of Chinese tourists is spatially heterogeneous. The network analysis reveals that Iceland showcases stronger, compared to the other Nordic countries, community independence and small world effect. (3) During the warm season, Chinese tourists choose a variety of destinations, while in cold season, they tend to choose destinations with higher chances for spotting the northern lights. These results provide helpful information for the tourism management departments of Nordic countries to improve their marketing and development efforts directed for Chinese tourists. Numéro de notice : A2021-006 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101561 date de publication en ligne : 13/10/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96280
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101561[article]Impact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Impact of forest disturbance on InSAR surface displacement time series Type de document : Article/Communication Auteurs : Paula M. Bürgi, Auteur ; Rowena B. Lohman, Auteur Année de publication : 2021 Article en page(s) : pp 128 - 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du signal
[Termes descripteurs IGN] erreur de phase
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] image ALOS
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] retard ionosphèrique
[Termes descripteurs IGN] retard troposphérique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] Sumatra
[Termes descripteurs IGN] surveillance géologiqueRésumé : (auteur) As interferometric synthetic aperture radar (InSAR) data improve in their global coverage and temporal sampling, studies of ground deformation using InSAR are becoming feasible even in heavily vegetated regions such as the American Pacific Northwest (PNW) and Sumatra. However, ongoing forest disturbance due to logging, wildfires, or disease can introduce time-variable signals which could be misinterpreted as ground displacements. This study constrains the error introduced into InSAR time series in the presence of time-variable forest disturbance using synthetic data. For satellite platforms with randomly distributed orbital positions in time (e.g., Sentinel-1), mid-time series forest disturbance results in random error on the order of 0.2 and 10 cm/year for 1-year secular and time-variable velocities, respectively. If the orbital positions are not randomly distributed in time (e.g., ALOS-1), a biased error on the order of 10 cm/year is introduced to the inferred secular velocity. A time series using real ALOS-1 data near Eugene, OR, USA, shows agreement with the bias estimated by synthetic models. Mitigation of time-variable land cover change effects can be achieved if their timing is known, either through independent observations of surface properties (e.g., Landsat/Sentinel-2) or through the use of more computationally expensive, nonlinear inversions with additional terms for the timing of height changes. Inclusion of these additional terms reduces the potential for misinterpretation of InSAR signals associated with land surface change as ground deformation. Numéro de notice : A2021-032 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992938 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992938 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96727
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 128 - 138[article]Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkModeling the risk of robbery in the city of Tshwane, South Africa / Nicolas Kemp in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
PermalinkSherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level / Laura Di Rocco in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkAssessing historical maps for characterizing fluvial corridor changes at a regional network scale / Samuel Dunesme in Cartographica, vol 55 n° 4 (Winter 2020)
PermalinkDoes recent fire activity impact fire-related traits of Pinus halepensis Mill. and Pinus sylvestris L. in the French Mediterranean area? / Bastien Romero in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkHow urban places are visited by social groups? Evidence from matrix factorization on mobile phone data / Chaogui Kang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkLarge-scale stochastic flood hazard analysis applied to the Po River / A. Curran in Natural Hazards, vol 104 n° 3 (December 2020)
Permalink