Descripteur
Termes IGN > sciences humaines et sociales
sciences humaines et socialesSynonyme(s)sciences de l'homme et de la société |
Documents disponibles dans cette catégorie (9258)


Etendre la recherche sur niveau(x) vers le bas
From data to narratives: Scrutinising the spatial dimensions of social and cultural phenomena through lenses of interactive web mapping / Tian Lan in Journal of Geovisualization and Spatial Analysis, vol 6 n° 2 (December 2022)
![]()
[article]
Titre : From data to narratives: Scrutinising the spatial dimensions of social and cultural phenomena through lenses of interactive web mapping Type de document : Article/Communication Auteurs : Tian Lan, Auteur ; Oliver O'Brien, Auteur ; James Cheshire, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] carte interactive
[Termes IGN] culture
[Termes IGN] données démographiques
[Termes IGN] données socio-économiques
[Termes IGN] impact social
[Termes IGN] récit
[Termes IGN] Royaume-Uni
[Termes IGN] sciences sociales
[Termes IGN] web mappingRésumé : (auteur) Modern web mapping techniques have enhanced the storytelling capability of cartography. In this paper, we present our recent development of a web mapping facility that can be used to extract interesting stories and unique insights from a diverse range of socio-economic and demographic variables and indicators, derived from a variety of datasets. We then use three curated narratives to show that online maps are effective ways of interactive storytelling and visualisation, which allow users to tailor their own story maps. We discuss the reasons for the revival of the recent attention to narrative mapping and conclude that our interactive web mapping facility powered by data assets can be employed as an accessible and powerful toolkit, to identify geographic patterns of various social and economic phenomena by social scientists, journalists, policymakers, and the public. Numéro de notice : A2022-541 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-022-00117-x Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1007/s41651-022-00117-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101105
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 2 (December 2022) . - n° 22[article]Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Type de document : Article/Communication Auteurs : Luis Izquierdo-Horna, Auteur ; Miker Damazo, Auteur ; Deyvis Yanayaco, Auteur Année de publication : 2022 Article en page(s) : n° 101834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] déchet
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] Pérou
[Termes IGN] régression logistique
[Termes IGN] zone urbaineRésumé : (auteur) In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. Numéro de notice : A2022-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101834 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101052
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101834[article]Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt Type de document : Article/Communication Auteurs : André Bertoncini, Auteur ; Caroline Aubry-Wake, Auteur ; John W. Pomeroy, Auteur Année de publication : 2022 Article en page(s) : n° 113101 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SRTM
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] montagne
[Termes IGN] neige
[Termes IGN] pouvoir de résolution radiométriqueRésumé : (auteur) Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches. Numéro de notice : A2022-466 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113101 Date de publication en ligne : 30/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100800
in Remote sensing of environment > vol 278 (September 2022) . - n° 113101[article]Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping / Sandro Martinis in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping Type de document : Article/Communication Auteurs : Sandro Martinis, Auteur ; Sandro Groth, Auteur ; Marc Wieland, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113077 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Allemagne
[Termes IGN] Australie
[Termes IGN] carte thématique
[Termes IGN] fusion d'images
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] Mozambique
[Termes IGN] prévention des risques
[Termes IGN] série temporelle
[Termes IGN] Soudan
[Termes IGN] surveillance hydrologique
[Termes IGN] variation saisonnière
[Termes IGN] zone à risqueRésumé : (auteur) Satellite-based flood mapping has become an important part of disaster response. In order to accurately distinguish flood inundation from normally present conditions, up-to-date, high-resolution information on the seasonal water cover is crucial. This information is usually neglected in disaster management, which may result in a non-reliable representation of the flood extent, mainly in regions with highly dynamic hydrological conditions. In this study, we present a fully automated method to generate a global reference water product specifically designed for the use in global flood mapping applications based on high resolution Earth Observation data. The proposed methodology combines existing processing pipelines for flood detection based on Sentinel-1/2 data and aggregates permanent as well as seasonal water masks over an adjustable reference time period. The water masks are primarily based on the analysis of Sentinel-2 data and are complemented by Sentinel-1-based information in optical data scarce regions. First results are demonstrated in five selected study areas (Australia, Germany, India, Mozambique, and Sudan), distributed across different climate zones and are systematically compared with external products. Further, the proposed product is exemplary applied to three real flood events in order to evaluate the impact of the used reference water mask on the derived flood extent. Results show, that it is possible to generate a consistent reference water product at 10–20 m spatial resolution, that is more suitable for the use in rapid disaster response than previous masks. The proposed multi-sensor approach is capable of producing reasonable results, even if only few or no information from optical data is available. Further it becomes clear, that the consideration of seasonality of water bodies, especially in regions with highly dynamic hydrological and climatic conditions, reduces potential over-estimation of the inundation extent and gives a more reliable picture on flood-affected areas. Numéro de notice : A2022-467 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113077 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113077 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100801
in Remote sensing of environment > vol 278 (September 2022) . - n° 113077[article]Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM / Jiehua Cai in Engineering Geology, vol 305 (August 2022)
![]()
[article]
Titre : Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM Type de document : Article/Communication Auteurs : Jiehua Cai, Auteur ; Lu Zhang, Auteur ; Jie Dong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 106730 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] déformation de surface
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image optique
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] MNS lidar
[Termes IGN] MNS SRTM
[Termes IGN] séisme
[Termes IGN] Setchouan (Chine)
[Termes IGN] surveillance géologiqueRésumé : (auteur) On 8th August 2017, a catastrophic Ms. 7.0 earthquake with a focal depth of 20 km struck the Jiuzhaigou County in Sichuan Province, China. It exerted a strong influence on the slope stability within the surrounding areas and triggered numerous secondary geohazards including rockfalls and other co-seismic landslides, which incurred drastic surface changes, and thus can be easily identified from cloud-free high-resolution optical imagery. Most of such landslides became stabilized shortly after the earthquake while others moving very slowly for years. In contrast, some slopes were destabilized without significant surface change into slow-moving landslides, which may pose long-term potential threats to people's life and property. Therefore, it is crucial to accurately identify these slow-moving landslides and regularly monitor their post-seismic activity. In this study, we employed the synthetic aperture radar interferometry (InSAR) techniques to detect and monitor slow-moving landslides after the earthquake in the Jiuzhaigou area, and analyzed the impacts of the earthquake on these landslides through integration of multi-source data (InSAR, Lidar, optical image, and field survey). As a result, 16 slow-moving landslides were detected by InSAR in the Jiuzhaigou area, including several historical landslides. The results of time-series InSAR analyses enabled identification of three kinds of landslide evolution modes affected by the earthquake, i.e. acceleration of deformation of pre-existing landslides, reactivation of dormant landslide, and remobilization of earthquake-triggered landslide. Each mode is supported by detailed analyses of multi-source data. The results demonstrated that satellite InSAR combined with high-resolution Lidar and optical data can provide a cost-effective approach of post-earthquake geohazards detection and monitoring. Numéro de notice : A2022-469 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.enggeo.2022.106730 Date de publication en ligne : 28/05/2022 En ligne : https://doi.org/10.1016/j.enggeo.2022.106730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100811
in Engineering Geology > vol 305 (August 2022) . - n° 106730[article]Advancements in underground mine surveys by using SLAM-enabled handheld laser scanners / Artu Ellmann in Survey review, vol 54 n° 385 (July 2022)
PermalinkCan machine learning improve small area population forecasts? A forecast combination approach / Irina Grossman in Computers, Environment and Urban Systems, vol 95 (July 2022)
PermalinkEstimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
PermalinkExploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkGANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkInteractive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
PermalinkPolyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
PermalinkVisualising post-disaster damage on maps: a user study / Thomas Candela in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkMapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data / Santanu Malik in Geocarto international, vol 37 n° 8 ([22/06/2022])
PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
Permalink