Descripteur
Documents disponibles dans cette catégorie (56)



Etendre la recherche sur niveau(x) vers le bas
Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments / Daniela Craciun (2022)
![]()
Titre : Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments Type de document : Article/Communication Auteurs : Daniela Craciun , Auteur ; Arnaud Le Bris
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2 Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 21 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] estimation de pose
[Termes IGN] géoréférencement
[Termes IGN] gradient
[Termes IGN] histogramme
[Termes IGN] image ancienne
[Termes IGN] milieu naturel
[Termes IGN] modèle numérique de surfaceRésumé : (auteur) Automatic georeferencing for historical-to-nowadays aerial images represents the main ingredient for supplying territory evolution analysis and environmental monitoring. Existing georeferencing methods based on feature extraction and matching reported successful results for multi-epoch aerial images acquired in structured and man-made environments. While improving the state-of-the-art of the multi-epoch georeferencing problem, such frameworks present several limitations when applied to unstructured scenes, such as natural feature-less environments, characterized by homogenous or texture-less areas. This is mainly due to the lack of structured areas which often results in sparse and ambiguous feature matches, introducing inconsistencies during the pose estimation process. This paper addresses the automatic georeferencing problem for historical aerial images acquired in unstructured natural environments. The research work presented in this paper introduces a feature-less algorithm designed to perform historical-to-nowadays image matching for pose estimation in a fully automatic fashion. The proposed algorithm operates within two stages: (i) 2D patch extraction and matching and (ii) 3D patch-based local alignment. The final output is a set of 3D patch matches and the 3D rigid transformation relating each homologous patches. The obtained 3D point matches are designed to be injected into traditional multi-views pose optimisation engines. Experimental results on real datasets acquired over Fabas area situated in France demonstrate the effectiveness of the proposed method. Our findings illustrate that the proposed georeferencing technique provides accurate results in presence of large periods of time separating historical from nowadays aerial images (up to 48 years time span). Numéro de notice : C2022-020 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2022-21-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-21-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100846 Histograms of oriented mosaic gradients for snapshot spectral image description / Lulu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
![]()
[article]
Titre : Histograms of oriented mosaic gradients for snapshot spectral image description Type de document : Article/Communication Auteurs : Lulu Chen, Auteur ; Yong-Qiang Zhao, Auteur ; Jonathan Cheung-Wai Chan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 79 - 93 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] capteur multibande
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre spectral
[Termes IGN] histogramme
[Termes IGN] image proche infrarouge
[Termes IGN] image spectrale
[Termes IGN] mosaïque d'images
[Termes IGN] poursuite de cible
[Termes IGN] temps instantanéRésumé : (auteur) This paper presents a feature descriptor using Histogram of Oriented Mosaic Gradient (HOMG) that extracts spatial-spectral features directly from mosaic spectral images. Spectral imaging utilizes unique spectral signatures to distinguish objects of interest in the scene more discriminatively. Snapshot spectral cameras equipped with spectral filter arrays (SFAs) capture spectral videos in real time, making it possible to detect/track fast moving targets based on spectral imaging. How to effectively extract the spatial-spectral feature directly from the mosaic spectral images acquired by snapshot spectral cameras is a core issue for detection/tracking. So far, there is a lack of comprehensive and in-depth research on this issue. To this end, this paper proposed a new spatial-spectral feature extractor for mosaic spectral images. The proposed scheme finds two forms of SFA neighborhood (SFAN) to construct a feature extractor suitable for any SFA structure. Exploiting the spatial-spectral correlation in two SFANs, we design six mosaic spatial-spectral gradient operators to compute spatial-spectral gradient maps (SGMs). HOMG descriptors are constructed using the magnitude and orientation of SGMs. The effectiveness and generalizability of the proposed method have been verified with object tracking experiments. Compared to the state-of-the-art feature descriptors, HOMG ranked first on two datasets captured with snapshot spectral camera with different SFAs, achieving a gain of 3.9% and 5.9% in average success rate over the second-ranked feature. Numéro de notice : A2022-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.018 Date de publication en ligne : 12/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99058
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 79 - 93[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms / Gustavo H.X. Shiroma in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms Type de document : Article/Communication Auteurs : Gustavo H.X. Shiroma, Auteur ; Marco Lavalle, Auteur Année de publication : 2020 Article en page(s) : pp 754 - 3777 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bande L
[Termes IGN] décomposition de Gauss
[Termes IGN] Gabon
[Termes IGN] histogramme
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation 3D
[Termes IGN] polarimétrie radar
[Termes IGN] rétrodiffusion
[Termes IGN] structure de la végétationRésumé : (auteur) This article demonstrates how 3-D vegetation structure can be approximated by interferometric synthetic aperture radar (InSAR) backscatter-height histograms. Single-look backscatter measurements are plotted against the InSAR phase height and are aggregated spatially over a forest patch to form a 3-D histogram, referred to as InSAR backscatter-height histogram or simply InSAR histogram. InSAR histograms resemble LiDAR waveforms, suggesting that existing algorithms used to retrieve canopy height and ground topography from radar tomograms or LiDAR waveforms can be applied to InSAR histograms. Three algorithms are evaluated to generate maps of digital terrain, surface, and canopy height models: Gaussian decomposition, quantile, and backscatter threshold. Full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) data collected over the Gabonese Lopé National Park during the 2016 AfriSAR campaign are used to illustrate and compare the performance of the algorithms for the HH, HV, VV, HH+VV, and HH−VV polarimetric channels. Results show that radar-derived maps using the InSAR histograms differ by 4 m (top-canopy), 5 m (terrain), and 6 m (forest height) in terms of average root-mean-square errors (RMSEs) from standard maps derived from full-waveform laser, vegetation, and ice sensor (LVIS) LiDAR measurements. Numéro de notice : A2020-279 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2956989 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2956989 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95099
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 754 - 3777[article]Novel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images / Zhi Yong Lv in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
![]()
[article]
Titre : Novel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images Type de document : Article/Communication Auteurs : Zhi Yong Lv, Auteur ; Tong Fei Liu, Auteur ; Zhang Penglin, Auteur ; Jon Atli Benediktsson, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 9554 - 9574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse diachronique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Chine
[Termes IGN] classification pixellaire
[Termes IGN] détection de changement
[Termes IGN] histogramme
[Termes IGN] Hong-Kong
[Termes IGN] image à très haute résolution
[Termes IGN] phénologie
[Termes IGN] seuillage de pointsRésumé : (auteur) Detecting land cover change through very-high-resolution (VHR) remote sensing images is helpful in supporting urban sustainable development, natural disaster evaluation, and environmental assessment. However, the intraclass spectral variance in VHR remote sensing images is usually larger than that of median-low remote sensing images. Furthermore, the bitemporal images are usually acquired under different atmospheric conditions, sun height, soil moisture, and other factors. Consequently, in practical applications, many pseudo changes are presented in the detected map. In this paper, an adaptive histogram trend (AHT) similarity approach is promoted to quantitatively measure the magnitude between the corresponding pixels in bitemporal images in terms of change semantic. In the proposed approach, to reduce the phenological effect on the bitemporal images of land cover change detection (LCCD), we first define the quantitative description of AHT. Second, the change magnitudes between pairwise pixels are quantitatively measured by an improved bin-to-bin (B2B) distance between the corresponding AHTs. Then, the change magnitudes between two entire bitemporal images are measured AHT-by-AHT. Finally, binary threshold methods, such as the Otsu method or the double-window flexible pace search (DFPS) method, are used to divide the change magnitude image into binary change detection maps and obtain the final change detection map. The performance of the AHT-based LCCD approach is verified by four pairs of VHR remote-sensing images that correspond to two types of real land cover change cases. The detected results based on the four pairs of bitemporal VHR images outperformed the compared state-of-the-art LCCD methods. Numéro de notice : A2019-599 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2927659 Date de publication en ligne : 01/08/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2927659 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94593
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 12 (December 2019) . - pp 9554 - 9574[article]Unsupervised detection of ruptures in spatial relationships in video sequences based on log‑likelihood ratio / Abdalbassir Abou-Elailah in Pattern Analysis and Applications, vol 21 n° 3 (August 2018)
![]()
[article]
Titre : Unsupervised detection of ruptures in spatial relationships in video sequences based on log‑likelihood ratio Type de document : Article/Communication Auteurs : Abdalbassir Abou-Elailah , Auteur ; Isabelle Bloch, Auteur ; Valérie Gouet-Brunet
, Auteur
Année de publication : 2018 Projets : 1-Pas de projet / Article en page(s) : pp 829 - 846 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'événement
[Termes IGN] distance (mathématique)
[Termes IGN] histogramme
[Termes IGN] modèle linéaire
[Termes IGN] primitive
[Termes IGN] relation spatiale
[Termes IGN] séquence d'imagesRésumé : (Auteur) In this work, we propose a new approach to automatically detect ruptures in spatial relationships in video sequences, based on low-level primitives, in unsupervised manner. The spatial relationships between two objects of interest are modeled using angle and distance histograms as examples. The evolution of the spatial relationships during time is estimated from the distances between two successive angle or distance histograms and then considered as a temporal signal. The evolution of a spatial relationship is modeled by a linear Gaussian model. Then, two hypotheses “without change” and “with change” are considered, and a log-likelihood ratio is computed. The distribution of the log-likelihood ratio, given that H0 is true, is estimated and used to compute the p value. The comparison of this p value to a significance level 훼, expressing the probability of false alarms, allows us to detect significant ruptures in spatial relationships during time. In addition, this approach is generalized to detect multiple object events such as merging, splitting, and other events that contain ruptures in their spatial relationships evolution. This work shows that the description of spatial relationships across time is a promising step toward event detection. Numéro de notice : A2017-776 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10044-017-0669-9 Date de publication en ligne : 18/11/2017 En ligne : https://doi.org/10.1007/s10044-017-0669-9 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88974
in Pattern Analysis and Applications > vol 21 n° 3 (August 2018) . - pp 829 - 846[article]Range-image: Incorporating sensor topology for lidar point cloud processing / Pierre Biasutti in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)
![]()
PermalinkEnhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency / Changjiang Liu in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
PermalinkExploring cell tower data dumps for supervised learning-based point-of-interest prediction (industrial paper) / Ran Wang in Geoinformatica [en ligne], vol 20 n° 2 (April - June 2016)
PermalinkObject classification and recognition from mobile laser scanning point clouds in a road environment / Matti Lehtomäki in IEEE Transactions on geoscience and remote sensing, vol 54 n° 2 (February 2016)
PermalinkDetection of abrupt changes in spatial relationships in video sequences / Abdalbassir Abou-Elailah (2015)
![]()
PermalinkDetecting cars in UAV images with a catalog-based approach / Thomas Moranduzzo in IEEE Transactions on geoscience and remote sensing, vol 52 n° 10 tome 1 (October 2014)
PermalinkApproche de détermination de signature de texture : application à la classification de couverts forestiers d’image satellitaire à haute résolution / Wala Zaaboub in Revue Française de Photogrammétrie et de Télédétection, n° 207 (Juillet 2014)
PermalinkCartographie et suivi de la densité des arbres de l'arganeraie (Sud-Ouest du Maroc) à partir d'images de télédétection à haute résolution spatiale / Mbark Aouragh in Revue Française de Photogrammétrie et de Télédétection, n° 203 (Juillet 2013)
PermalinkSTHist-C: a highly accurate cluster-based histogram for two and three dimensional geographic data points / Hai Thanh Mai in Geoinformatica, vol 17 n° 2 (April 2013)
PermalinkReprésentation des couleurs d'une carte pour l'analyse : proportions, relations, harmonie ? / Laurent Jégou in Cartes & Géomatique, n° 213 (septembre 2012)
Permalink