Descripteur
Termes IGN > géomatique > base de données localisées > appariement de données localisées
appariement de données localiséesSynonyme(s)mise en correspondance de données géographiques appariement d'objets géographiques |
Documents disponibles dans cette catégorie (324)



Etendre la recherche sur niveau(x) vers le bas
Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks / Aurélien Brun in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks Type de document : Article/Communication Auteurs : Aurélien Brun, Auteur ; Davide Antonio Cucci, Auteur ; Jan Skaloud, Auteur Année de publication : 2022 Article en page(s) : pp 185 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] centrale inertielle
[Termes IGN] données lidar
[Termes IGN] filtre de Kalman
[Termes IGN] géoréférencement
[Termes IGN] précision du positionnement
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] signal GNSS
[Termes IGN] superpositionRésumé : (auteur) With the objective of improving the registration of lidar point clouds produced by kinematic scanning systems, we propose a novel trajectory adjustment procedure that leverages on the automated extraction of selected reliable 3D point–to–point correspondences between overlapping point clouds and their joint integration (adjustment) together with raw inertial and GNSS observations. This is performed in a tightly coupled fashion using a dynamic network approach that results in an optimally compensated trajectory through modeling of errors at the sensor, rather than the trajectory, level. The 3D correspondences are formulated as static conditions within the dynamic network and the registered point cloud is generated with significantly higher accuracy based on the corrected trajectory and possibly other parameters determined within the adjustment. We first describe the method for selecting correspondences and how they are inserted into the dynamic network via new observation model while providing an open-source implementation of the solver employed in this work. We then describe the experiments conducted to evaluate the performance of the proposed framework in practical airborne laser scanning scenarios with low-cost MEMS inertial sensors. In the conducted experiments, the method proposed to establish 3D correspondences is effective in determining point–to–point matches across a wide range of geometries such as trees, buildings and cars. Our results demonstrate that the method improves the point cloud registration accuracy (5 in nominal and 10 in emulated GNSS outage conditions within the studied cases), which is otherwise strongly affected by errors in the determined platform attitude or position, and possibly determine unknown boresight angles. The proposed methods remain effective even if only a fraction (0.1%) of the total number of established 3D correspondences are considered in the adjustment. Numéro de notice : A2022-413 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.04.027 Date de publication en ligne : 19/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100764
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 185 - 200[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
![]()
[article]
Titre : Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations Type de document : Article/Communication Auteurs : Ruozhen Cheng, Auteur ; Jiaxin Liao, Auteur ; Jing Chen, Auteur Année de publication : 2022 Article en page(s) : pp 129 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] information sémantique
[Termes IGN] modèle d'ontologie
[Termes IGN] point d'intérêt
[Termes IGN] raisonnement spatial
[Termes IGN] relation spatiale
[Termes IGN] service fondé sur la position
[Termes IGN] similitude sémantiqueRésumé : (auteur) Locating points of interest (POIs) from descriptions can support intelligent location-based services. Available research achieves it through address matching and spatial reasoning. However, semantic characteristics and spatial proximities of address fields are usually neglected in address matching; current applications of spatial reasoning represent qualitative spatial relations in semantic networks for efficient queries, but they do not yet scale to large datasets for qualitative direction reasoning due to massive qualitative direction relations between objects; moreover, spatial reasoning on various quantitative distances should be optimized. This study proposes a method that improves the accuracy of address matching by combining multiple similarities and enables quick spatial reasoning through the faster relation retrieval of compact qualitative direction representations implemented on global equal latitude and longitude grids (ELLGs) and the ELLG-based quantitative calculations. The proposed method has been verified by two real-world datasets and proven to be efficient and accurate when locating POIs in large POI datasets from descriptions. Numéro de notice : A2022-177 Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12838 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1111/tgis.12838 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99834
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 129 - 154[article]An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web / Abdulkadir Memduhoglu in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
![]()
[article]
Titre : An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web Type de document : Article/Communication Auteurs : Abdulkadir Memduhoglu, Auteur ; Melih Basaraner, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement géométrique
[Termes IGN] approche participative
[Termes IGN] bâtiment
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multiéchelles
[Termes IGN] Istanbul (Turquie)
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] SWRL
[Termes IGN] web des données
[Termes IGN] web sémantique
[Termes IGN] zone urbaineRésumé : (auteur) The advent of Web 2.0 has emerged abundant but often unstructured user-generated georeferenced data, such as those from Volunteered Geographic Information (VGI) initiatives. In many cases, these data can be considered as complementary to the authoritative geospatial data. With the increasing availability of multi-source geospatial data, the efforts for geospatial data integration have gained momentum, aiming at gathering maximum information to answer sophisticated questions that cannot be answered using a single data source. Although there are various approaches employed for this purpose with different degrees of success, semantic web methods and tools have not been tested sufficiently in this scope, particularly for multi-scale urban building data integration and enrichment. Attempting to fill this gap, in this study, multi-source and multi-scale urban building data were integrated with a geometric matching method based on the overlapping area, then a geospatial ontology was developed to define multi-scale representations and detailed cardinality relations of the building features. Finally, some features from the geospatial ontology were then linked to popular knowledge bases such as DBpedia and YAGO. For the exploitation on the web, query and visualization processes were demonstrated using sample questions. The semantic web enabled to model complex cardinality of relations between the features from three different building data sets using inferencing and Semantic Web Rule Language (SWRL). The study showed that integrating different geospatial data sets as a knowledge base can facilitate answering sophisticated questions from different users. Numéro de notice : A2022-016 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1952108 Date de publication en ligne : 24/08/2021 En ligne : https://doi.org/10.1080/15230406.2021.1952108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99147
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 1 - 17[article]Automatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
PermalinkPermalinkA method to produce metadata describing and assessing the quality of spatial landmark datasets in mountain area / Marie-Dominique Van Damme (2022)
PermalinkAutomatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
PermalinkConnecting family trees to construct a population-scale and longitudinal geo-social network for the U.S. / Caglar Koylu in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)
PermalinkFeature matching for multi-epoch historical aerial images: A new pipeline feature detection pipeline in open-source MicMac / Lulin Zhang in Blog de la RFPT, sans n° ([17/11/2021])
PermalinkFeature matching for multi-epoch historical aerial images / Lulin Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 182 (December 2021)
![]()
PermalinkComplexity-based matching between image resolution and map scale for multiscale image-map generation / Qian Peng in International journal of geographical information science IJGIS, vol 35 n° 10 (October 2021)
PermalinkTarget-based automated matching of multiple terrestrial laser scans for complex forest scenes / Xuming Ge in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
PermalinkLayout graph model for semantic façade reconstruction using laser point clouds / Hongchao Fan in Geo-spatial Information Science, vol 24 n° 3 (July 2021)
Permalink