Descripteur


Etendre la recherche sur niveau(x) vers le bas
PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery Type de document : Article/Communication Auteurs : Xian Sun, Auteur ; Peijin Wang, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 50 - 65 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse contextuelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] objet géographique complexe
[Termes descripteurs IGN] rectangle englobant minimumRésumé : (auteur) In recent years, deep learning-based algorithms have brought great improvements to rigid object detection. In addition to rigid objects, remote sensing images also contain many complex composite objects, such as sewage treatment plants, golf courses, and airports, which have neither a fixed shape nor a fixed size. In this paper, we validate through experiments that the results of existing methods in detecting composite objects are not satisfying enough. Therefore, we propose a unified part-based convolutional neural network (PBNet), which is specifically designed for composite object detection in remote sensing imagery. PBNet treats a composite object as a group of parts and incorporates part information into context information to improve composite object detection. Correct part information can guide the prediction of a composite object, thus solving the problems caused by various shapes and sizes. To generate accurate part information, we design a part localization module to learn the classification and localization of part points using bounding box annotation only. A context refinement module is designed to generate more discriminative features by aggregating local context information and global context information, which enhances the learning of part information and improve the ability of feature representation. We selected three typical categories of composite objects from a public dataset to conduct experiments to verify the detection performance and generalization ability of our method. Meanwhile, we build a more challenging dataset about a typical kind of complex composite objects, i.e., sewage treatment plants. It refers to the relevant information from authorities and experts. This dataset contains sewage treatment plants in seven cities in the Yangtze valley, covering a wide range of regions. Comprehensive experiments on two datasets show that PBNet surpasses the existing detection algorithms and achieves state-of-the-art accuracy. Numéro de notice : A2021-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.015 date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.015 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96891
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 50 - 65[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]A heuristic approach to the generalization of complex building groups in urban villages / Wenhao Yu in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : A heuristic approach to the generalization of complex building groups in urban villages Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Qi Zhou, Auteur ; Rong Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 155 - 179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] représentation multiple
[Termes descripteurs IGN] triangulation de Delaunay
[Termes descripteurs IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The generalization of building footprints acts as the basis of multi-scale mapping. Most of the previous studies focus on the generalization of regular building clusters within a wide neighbourhood, but only few has concerned about the generalization of cluttered building clusters within the narrow space such as urban village. The buildings in urban villages show special characteristics in terms of individual properties and group properties, and thus their map generalization processes are often limited. This study proposes a framework to generalize the cluttered building clusters that allows for multi-scale mapping. It first adopts a heuristic method to group adjacent buildings based on the Delaunay triangulation model and then aggregates and simplifies each building group separately. Given that the aggregated buildings in urban villages often show cluttered alignments, our method further trims the jagged boundaries of building footprints by extracting the gap space between neighbouring buildings from the Delaunay triangulation model. Numéro de notice : A2021-084 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.159046 date de publication en ligne : 25/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1590463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96843
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 155 - 179[article]A spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : A spatiotemporal structural graph for characterizing land cover changes Type de document : Article/Communication Auteurs : Bin Wu, Auteur ; Ballang Yu, Auteur ; Song Shu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 397 - 425 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] changement temporel
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] New York (Etats-Unis ; état)
[Termes descripteurs IGN] objet géographique
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Characterizing landscape patterns and revealing their underlying processes are critical for studying climate change and environmental problems. Previous methods for mapping land cover changes largely focused on the classification of remote sensing images. Therefore, they could not provide information about the evolutionary process of land cover changes. In this paper, we developed a spatiotemporal structural graph (STSG) technique for a comprehensive analysis of land cover changes. First, a land cover neighborhood graph was generated for each snapshot to quantify the spatial relationship between adjacent land cover objects. Then, an object-based temporal tracking algorithm was designed to monitor the temporal changes between land cover objects over time. Finally, land cover evolutionary trajectories, pixel-level land cover change trajectories, and node-wise connectivity changes over time were characterized. We applied the proposed method to analyze land cover changes in Suffolk County, New York from 1996 to 2010. The results demonstrated that STSG can not only characterize and visualize detailed land cover changes spatially but also maintain the temporal sequence and relations of land cover objects in an integrated space-time environment. The proposed STSG provides a useful framework for analyzing land cover changes and can be adapted to characterize and quantify other spatiotemporal phenomena. Numéro de notice : A2021-041 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1778706 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1778706 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96753
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 397 - 425[article]Geographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in International Journal of Health Geographics, vol inconnu (2021)
![]()
[article]
Titre : Geographically masking addresses to study COVID-19 clusters Type de document : Article/Communication Auteurs : Walid Houfaf-Khoufaf, Auteur ; Guillaume Touya , Auteur
Année de publication : 2021 Projets : 1-Pas de projet / Note générale : bibliographie
10.21203/rs.3.rs-128679/v1 DOI d'attenteLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] adresse postale
[Termes descripteurs IGN] anonymisation
[Termes descripteurs IGN] carte sanitaire
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] surveillance sanitaire
[Termes descripteurs IGN] traitement de données localiséesRésumé : (auteur) The spatio-temporal analysis of cases is a good way an epidemic, and the recent COVID-19 pandemic unfortunately generated a huge amount of data. But analysing this raw data, with for instance the address of the people who contracted COVID-19, raises some privacy issues, and geomasking is necessary to preserve both people privacy and the spatial accuracy required for analysis. This paper proposes dierent geomasking techniques adapted to this COVID-19 data. Methods: Different techniques are adapted from the literature, and tested on a synthetic dataset mimicking the COVID-19 spatio-temporal spreading in Paris and a more rural nearby region. Theses techniques are assessed in terms of k-anonymity and cluster preservation. Results: Three adapted geomasking techniques are proposed: aggregation, bimodal gaussian perturbation, and simulated crowding. All three can be useful in different use cases, but the bimodal gaussian perturbation is the overall best techniques, and the simulated crowding is the most promising one, provided some improvements are introduced to avoid points with a low k-anonymity. Conclusions: It is possible to use geomasking techniques on addresses of people who caught COVID-19, while preserving the important spatial patterns. Numéro de notice : A2021-065 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.21203/rs.3.rs-128679/v1 En ligne : https://doi.org/10.21203/rs.3.rs-128679/v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96857
in International Journal of Health Geographics > vol inconnu (2021)[article]Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / R. Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkRelation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkUnmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkAssessing historical maps for characterizing fluvial corridor changes at a regional network scale / Samuel Dunesme in Cartographica, vol 55 n° 4 (Winter 2020)
PermalinkChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkA data fusion-based framework to integrate multi-source VGI in an authoritative land use database / Lanfa Liu in International Journal of Digital Earth, vol inconnu ([01/12/2020])
PermalinkDu drone LiDAR à un nuage de points précis et exact : une chaîne de traitement LiDAR adaptée et quasi automatique / Maxime Lafleur in XYZ, n° 165 (décembre 2020)
PermalinkLegal aspects of registration the time of cadastral data creation or modification / Joanna Reczyńska in Reports on geodesy and geoinformatics, vol 110 n°1 (December 2020)
PermalinkMS-RRFSegNetMultiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds / Haifeng Luo in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkSemantic‐based urban growth prediction / Marvin Mc Cutchan in Transactions in GIS, Vol 24 n° 6 (December 2020)
Permalink