Descripteur
Documents disponibles dans cette catégorie (1304)


Etendre la recherche sur niveau(x) vers le bas
Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Type de document : Article/Communication Auteurs : Luis Izquierdo-Horna, Auteur ; Miker Damazo, Auteur ; Deyvis Yanayaco, Auteur Année de publication : 2022 Article en page(s) : n° 101834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] déchet
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] Pérou
[Termes IGN] régression logistique
[Termes IGN] zone urbaineRésumé : (auteur) In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. Numéro de notice : A2022-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101834 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101052
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101834[article]Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression Type de document : Article/Communication Auteurs : Haoyu Wang, Auteur ; Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113088 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de régression
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Global urbanization changes land cover patterns and affects the living environment of humans. However, urbanization and its evolution process, i.e., conversions among diverse land covers, are hard to measure, as existing land cover maps usually have low temporal resolutions; conversely, long-term and temporally dense land cover maps, such as vegetation-impervious-soil decomposition maps base on MODIS, ignore the important land cover of cropland in urban evolution process (UEP). To resolve the issue, this study suggests a novel model named time-extended non-crop vegetation-impervious-cropland (Time V-I-C) to represent and quantify different stages of UEP; then, a normalized multi-objective T-ConvLSTM (NMT) method is proposed to unmix cropland, non-crop vegetation, and impervious based on the intra-annual remotely-sensed time series, and obtain their fractions in each pixel for generating UEP maps. Consequently, UEP maps from 2001 to 2018 are generated for two Chinese urban agglomerations, i.e., Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations. The mapping results have high accuracies with a small standard error of regression (SER) of 13.1%, small root mean square error (RMSE) of 12.6%, and small mean absolute error (MAE) of 8.4%, and the maps reveal the different UEP in the two urban agglomerations. Therefore, this study provides a new idea for expressing UEP and contributes to a wide range of urbanization studies and sustainable city development. Numéro de notice : A2022-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.rse.2022.113088 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113088 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101049
in Remote sensing of environment > vol 278 (September 2022) . - n° 113088[article]3D building reconstruction from single street view images using deep learning / Hui En Pang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : 3D building reconstruction from single street view images using deep learning Type de document : Article/Communication Auteurs : Hui En Pang, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : n° 102859 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] empreinte
[Termes IGN] Helsinki
[Termes IGN] image Streetview
[Termes IGN] maillage
[Termes IGN] morphologie urbaine
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'imageNuméro de notice : A2022-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101160
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102859[article]An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
![]()
[article]
Titre : An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images Type de document : Article/Communication Auteurs : Kwanghun Choi, Auteur ; Wontaek LIM, Auteur ; Byungwoo Chang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] gestion forestière durable
[Termes IGN] image Streetview
[Termes IGN] inventaire de la végétation
[Termes IGN] segmentation sémantique
[Termes IGN] SéoulRésumé : (auteur) Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41. Numéro de notice : A2022-503 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.004 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101001
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 165 - 180[article]Deep learning feature representation for image matching under large viewpoint and viewing direction change / Lin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
PermalinkGenerating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
PermalinkMapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)
PermalinkSmart city data science: Towards data-driven smart cities with open research issues / Iqbal H. Sarker in Internet of Things, vol 19 (August 2022)
PermalinkTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
PermalinkCan machine learning improve small area population forecasts? A forecast combination approach / Irina Grossman in Computers, Environment and Urban Systems, vol 95 (July 2022)
PermalinkEstimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
PermalinkExploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkA framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
PermalinkGANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
Permalink