Descripteur
Termes descripteurs IGN > informatique > intelligence artificielle > réseau neuronal artificiel
réseau neuronal artificielVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Machine learning in ground motion prediction / Farid Khosravikia in Computers & geosciences, vol 148 (March 2021)
![]()
[article]
Titre : Machine learning in ground motion prediction Type de document : Article/Communication Auteurs : Farid Khosravikia, Auteur ; Patricia Clayton, Auteur Année de publication : 2021 Article en page(s) : n° 104700 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] mouvement de terrain
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] sismicitéRésumé : (auteur) This paper studies the advantages and disadvantages of different machine learning techniques in predicting ground-motion intensity measures given source characteristics, source-to-site distance, and local site conditions. Typically, linear regression-based models with predefined equations and coefficients are used in ground motion prediction. However, restrictions of the linear regression models may limit their capabilities in extracting complex nonlinear behaviors in the data. Therefore, the present paper comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. This study quantifies event-to-event and site-to-site variability of the ground motions by implementing them as random effect terms to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4–500 km in Oklahoma, Kansas, and Texas since 2005. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring predefined equations or coefficients. Moreover, it is found that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Numéro de notice : A2021-230 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1016/j.cageo.2021.104700 date de publication en ligne : 21/01/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104700 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97220
in Computers & geosciences > vol 148 (March 2021) . - n° 104700[article]Performance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
![]()
[article]
Titre : Performance evaluation of artificial neural networks for natural terrain classification Type de document : Article/Communication Auteurs : Perpetual Hope Akwensi, Auteur ; Eric Thompson Brantson, Auteur ; Johanna Ngula Niipele, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Afrique occidentale
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] fonction de base radiale
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] inventaire de la végétation
[Termes descripteurs IGN] réalité de terrain
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Remotely sensed image segmentation and classification form a very important part of remote sensing which involves geo-data processing and analysis. Artificial neural networks (ANNs) are powerful machine learning approaches that have been successfully implemented in numerous fields of study. There exist many kinds of neural networks and there is no single efficient approach for resolving all geospatial problems. Therefore, this research aims at investigating and evaluating the efficiency of three ANN approaches, namely, backpropagation neural network (BPNN), radial basis function neural network (RBFNN), and Elman backpropagation recurrent neural network (EBPRNN) using multi-spectral satellite images for terrain feature classification. Additionally, there has been close to no application of EBPRNN in modeling multi-spectral satellite images even though they also contain patterns. The efficiency of the three tested approaches is presented using the kappa coefficient, user’s accuracy, producer’s accuracy, overall accuracy, classification error, and computational simulation time. The study demonstrated that all the three ANN models achieved the aim of pattern identification, segmentation, and classification. This paper also discusses the observations of increasing sample sizes as inputs in the various ANN models. It was concluded that RBFNN’s computational time increases with increasing sample size and consequently increasing the number of hidden neurons; BPNN on overall attained the highest accuracy compared to the other models; EBPRNN’s accuracy increases with increasing sample size, hence a promising and perhaps an alternative choice to BPNN and RBFNN if very large datasets are involved. Based on the performance metrics used in this study, BPNN is the best model out of the three evaluated ANN models. Numéro de notice : A2021-223 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-021-00360-9 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1007/s12518-021-00360-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97194
in Applied geomatics > vol 13 n° 1 (March 2021)[article]Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Michele Iacobelli, Auteur ; Massimo Orlandi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 915 - 928 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Adriatique, mer
[Termes descripteurs IGN] bathymétrie
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] couleur de l'océan
[Termes descripteurs IGN] eaux côtières
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] incertitude spectrale
[Termes descripteurs IGN] matière organique
[Termes descripteurs IGN] Méditerranée, mer
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Recent optical remote sensing satellite missions, such as Sentinel-2 with the MultiSpectral Imager (MSI) onboard, allow the estimation of coastal water key parameters with very high spatial resolutions (down to 10 m). In this article, multiple approaches are proposed for retrieving chlorophyll-a (Chl-a) and total suspended matter (TSM) along the Adriatic and Tyrrhenian coasts in Italy, using both empirical and model-based frameworks to design regressive and neural network (NN) estimation methods. The latter proves to be more accurate on a regional scale, where standard ocean color physical models exhibit high uncertainty in their local parameterization due to the complex spectral characteristics of the observed scene. Retrieval results are encouraging for Chl-a with a coefficient of determination R2 up to 0.72 with a root-mean-square error (RMSE) of 0.33 mg m−3 , using an empirical NN. The TSM algorithms exhibit higher uncertainty, mainly due to scarcity of in situ measurements and model parameterizations, with R2=0.52 and RMSE = 1.95 g/m 3 using NNs. The bio-optical model, used for the development of model-based algorithms, shows some inadequacies in representing the inherent and apparent optical properties for the case study areas, especially considering the different spectral features between the oligotrophic Tyrrhenian Sea and the eutrophic Adriatic Sea. This study confirms the potential of Sentinel-2 MSI products for coastal water monitoring, but it also highlights key issues to be further tackled such as the atmospheric correction impact, the need of reliable in situ measurements, and possible bathymetry effects near the shores. Numéro de notice : A2021-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2980941 date de publication en ligne : 09/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2980941 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96912
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 915 - 928[article]A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Zhice Fang, Auteur ; Yi Wang, Auteur ; Ling Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 321 - 347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] risque naturelRésumé : (auteur) This study introduces four heterogeneous ensemble-learning techniques, that is, stacking, blending, simple averaging, and weighted averaging, to predict landslide susceptibility in Yanshan County, China. These techniques combine several state-of-the-art classifiers of convolutional neural network, recurrent neural network, support vector machine, and logistic regression in specific ways to produce reliable results and avoid problems with the model selection. The study consists of three main steps. The first step establishes a spatial database consisting of 16 landslide conditioning factors and 380 historical landslide locations. The second step randomly selects training (70% of the total) and test (30%) datasets out of grid cells corresponding to landslide and non-slide locations in the study area. The final step constructs the proposed heterogeneous ensemble-learning methods for landslide susceptibility mapping. The proposed ensemble-learning methods show higher prediction accuracy than the individual classifiers mentioned above based on statistical measures. The blending ensemble-learning method achieves the highest overall accuracy of 80.70% compared to the other ensemble-learning methods. Numéro de notice : A2021-028 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808897 date de publication en ligne : 15/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808897 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96704
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 321 - 347[article]Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
![]()
[article]
Titre : Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control Type de document : Article/Communication Auteurs : Adolfo Lozano-Tello, Auteur ; Marcos Fernández-Sellers, Auteur ; Elia Quirós, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] Estrémadure (Espagne)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] politique agricole commune
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) The early and automatic identification of crops declared by farmers is essential for streamlining European Union Common Agricultural Policy (CAP) payment processes. Currently, field inspections are partial, expensive and entail a considerable delay in the process. Chronological satellite images of cultivated plots can be used so that neural networks can form the model of the declared crop. Once the patterns of a crop are obtained, the correspondence of the declaration with the model of the neural network can be systematically predicted, and can be used for monitoring the CAP. In this article, we propose a learning model with neural networks, using as examples of training the pixels of the cultivated plots from the satellite images over a period of time. We also propose using several years in the training model to generalise the patterns without linking them to the climatic characteristics of a specific year. The article also describes the use of the model in learning the multi-year pattern of tobacco cultivation with very good results. Numéro de notice : A2021-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1858723 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1858723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97012
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 1 - 12[article]Evaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkSemantic‐based urban growth prediction / Marvin Mc Cutchan in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkLearning-based hyperspectral imagery compression through generative neural networks / Chubo Deng in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkSea surface temperature and high water temperature occurrence prediction using a long short-term memory model / Minkyu Kim in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkThe construction of sound speed field based on back propagation neural network in the global ocean / Junting Wang in Marine geodesy, vol 43 n° 6 (November 2020)
PermalinkUrban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model / Tingting Xu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkApplication of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data / Mahdi Moalla in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkCompensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction / Wanli Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkGround-based remote sensing of forests exploiting GNSS signals / Leila Guerriero in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
Permalink