Descripteur
Termes IGN > informatique > base de données > base de données orientée objet
base de données orientée objetVoir aussi |
Documents disponibles dans cette catégorie (217)



Etendre la recherche sur niveau(x) vers le bas
An improved optimization model for crowd evacuation considering individual exit choice preference / Fei Gao in Transactions in GIS, vol 26 n° 7 (November 2022)
![]()
[article]
Titre : An improved optimization model for crowd evacuation considering individual exit choice preference Type de document : Article/Communication Auteurs : Fei Gao, Auteur ; Zhiqiang Du, Auteur ; Martin Werner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2850 - 2873 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] comportement
[Termes IGN] événement
[Termes IGN] gestion de crise
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] planification
[Termes IGN] secours d'urgenceRésumé : (auteur) Guidance-assisted crowd evacuation is a process of combining individual exit choice behavior with managers'exit assignment control. The knowledge of individual exit choice preference is of great significance for optimizing global exit assignment planning. This study proposes an improved optimization model for crowd evacuation by integrating the individual-level exit choice preference analysis with system-level exit assignment optimization to represent more realistic crowd evacuation decisions. First, the impact factors of individual exit choice behavior are considered in a mixed logit model to predict the probability of each individual choosing each exit in specific situations. Second, a preference-based exit filtering strategy is designed to analyze the sensible alternative exits for individuals or groups in multi-scale evacuation cells. Finally, to pursue optimal exit assignment planning, a multi-objective particle swarm optimization algorithm and an improved social force model are adopted to simulate the process of crowd evacuation and evaluate the performance of the specific exit assignment plans. The case study of an outdoor multiple-exit scenario in Xi'an, China, indicates that the proposed model can help managers to understand the heterogeneity of individual evacuation behaviors. Furthermore, it will support more reliable and realistic evacuation decisions in real-life situations than conventional plans that typically implement the top-n strategy. Numéro de notice : A2022-833 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12984 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12984 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102216
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 2850 - 2873[article]Interactive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
![]()
[article]
Titre : Interactive visual analytics of moving passenger flocks using massive smart card data Type de document : Article/Communication Auteurs : Tong Zhang, Auteur ; Wei He, Auteur ; Jing Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 354 - 369 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatiale
[Termes IGN] analyse visuelle
[Termes IGN] carte à puce
[Termes IGN] données massives
[Termes IGN] mobilité urbaine
[Termes IGN] objet mobile
[Termes IGN] Shenzhen
[Termes IGN] trajet (mobilité)
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Understanding urban mobility patterns is constrained by our limited capabilities to extract and visualize spatio-temporal regularities from large amounts of mobility data. Moving flocks, defined as groups of people traveling along over a pre-defined time duration, can reveal collective moving patterns at aggregated spatio-temporal scales, thereby facilitating the discovery of urban mobility structure and travel demand patterns. In this study, we extend classical trajectory-oriented flock mining algorithms to discover moving flocks of transit passengers, accounting for the constraints of multi-modal transit networks. We develop a map-centered visual analytics approach by integrating the flock mining algorithm with interactive visualization designs of discovered flocks. Novel interactive visualizations are designed and implemented to support the exploration and analyses of discovered moving flocks at different spatial and temporal scales. The visual analytics approach is evaluated using a real-world smart card dataset collected in Shenzhen City, China, validating its applicability in capturing and mapping dynamic mobility patterns over a large metropolitan area. Numéro de notice : A2022-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2022.2039775 Date de publication en ligne : 09/03/2022 En ligne : https://doi.org/10.1080/15230406.2022.2039775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100886
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 354 - 369[article]Modeling human–human interaction with attention-based high-order GCN for trajectory prediction / Yanyan Fang in The Visual Computer, vol 38 n° 7 (July 2022)
![]()
[article]
Titre : Modeling human–human interaction with attention-based high-order GCN for trajectory prediction Type de document : Article/Communication Auteurs : Yanyan Fang, Auteur ; Zhiyu Jin, Auteur ; Zhenhua Cui, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2257 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de cible
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] interaction spatiale
[Termes IGN] modèle de simulation
[Termes IGN] objet mobile
[Termes IGN] piéton
[Termes IGN] réseau neuronal de graphes
[Termes IGN] trajet (mobilité)Résumé : (auteur) This paper presents a novel high-order graph convolutional network (GCN) for pedestrian trajectory prediction. Specifically, the walking state of a target pedestrian depends on both its historical trajectory, which encodes its speed, walking direction and acceleration information, as well as the movement of its neighbors. Thus we propose to leverage GCNs to aggregate the trajectory features of the target pedestrian and its neighbors to predict the movement of the target pedestrian. Considering that the movement of the neighbors’ neighbors affects the movement of the target pedestrian’s neighbors, thus indirectly affecting the movement of the target pedestrian, we propose to use a high-order GCN for human–human interaction modelling. Such a high-order GCN considers the target pedestrian’s neighbors as well as its neighbors’ neighbors. Further, a pedestrian avoids collision with others by estimating its locations and its neighbors’ upcoming locations, and it slows down or changes direction if it believes a collision may occur, especially in very crowded scenes. In light of this, we propose to model such anticipation-based decision making behavior as attention and combine it with our high-order GCN. Thus we first roughly estimate the future trajectories of all pedestrians with a simple method. By using the coarse predicted future trajectory and GCN outputs, we calculate the attention in our attention-based high-order GCN and predict future trajectory. Extensive experiments validate the effectiveness of our approach. In addition, our model shows a higher data efficiency. On the ETH&UCY dataset, using only 5% of the training data for each training epoch, our model outperforms the state of the art. Numéro de notice : A2022-507 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02109-2 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02109-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101040
in The Visual Computer > vol 38 n° 7 (July 2022) . - pp 2257 - 2269[article]Detecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Detecting spatiotemporal traffic events using geosocial media data Type de document : Article/Communication Auteurs : Shishuo Xu, Auteur ; Songnian Li, Auteur ; Wei Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101797 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] base de données d'objets mobiles
[Termes IGN] base de données spatiotemporelles
[Termes IGN] détection d'événement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] planification urbaine
[Termes IGN] sécurité routière
[Termes IGN] Toronto
[Termes IGN] trafic routier
[Termes IGN] TwitterRésumé : (auteur) Social media platforms enable efficient traffic event detection by allowing users to produce geo-tagged content (e.g., tweets) known as geosocial media data. Geosocial media data improve road safety by providing timely updates for traffic flow and traffic control. Recent studies on traffic event detection with geosocial media data have been focused around keyword-based query approaches, where the event content was inferred by predetermined categories, to retrieve relevant traffic events. Spatiotemporal features associated with traffic-related posts have not been fully investigated. In this study, we filtered irrelevant posts with association rules. A spatiotemporal clustering-based method was then used to retrieve traffic events from these filtered posts, where the content of detected events was automatically inferred with a set of representative terms. For comparison, a typical text classification-based method was also used by classifying the posts filtered from association rules into different categories. By validating the detection results with vehicle travel speed data, we demonstrate that the former outperforms the latter in terms of the number of correctly detected traffic events from one-year of Twitter data in Toronto, Canada. Our proposed approach helps organizations and governments to be aware of when and where traffic events occur by identifying event hotspots and peak periods, which improves both traffic management and urban planning. Numéro de notice : A2022-264 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101797 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100261
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101797[article]Interactive HGIS platform union of Lublin (1569): A geomatic solution for discovering the Jagiellonian heritage of the city / Jakub Kuna in Journal of Cultural Heritage, vol 53 (January–February 2022)
![]()
[article]
Titre : Interactive HGIS platform union of Lublin (1569): A geomatic solution for discovering the Jagiellonian heritage of the city Type de document : Article/Communication Auteurs : Jakub Kuna, Auteur ; Jacek Jeremicz, Auteur ; Dagmara Kociuba, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 47 - 71 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] archives
[Termes IGN] base de données historiques
[Termes IGN] base de données orientée objet
[Termes IGN] base de données spatiotemporelles
[Termes IGN] carte ancienne
[Termes IGN] carte interactive
[Termes IGN] patrimoine culturel
[Termes IGN] Pologne
[Termes IGN] seizième siècle
[Termes IGN] système d'information historique
[Termes IGN] WebSIGRésumé : (auteur) Lublin in the period of the Lublin Union (1569) is an interdisciplinary research project conducted by the “Grodzka Gate – NN Theatre” Centre in Lublin as a part of the celebration of the 450th anniversary of signing the Union of Lublin Act - one of the most important historical events in 16th-century Europe, during which the Polish-Lithuanian Commonwealth was constituted. This paper aims to present the research process by which an innovative Historical GIS web platform, based on an object-orientated database design, was tested and refined. The portal uses four pillars of spatial-temporal databases (events, people, places, sources) to collect data and develop historical narratives presenting various events in the history of the city and the region. The idea behind the project was to develop an Internet portal that would acknowledge modern users with the historical event of the Union of Lublin from the perspective of the then resident of Lublin. What is known about the 16th-century Lublin? What did the city and its surroundings look like? Who lived in Lublin? Who used to visit it? What architectural elements and traces of cultural heritage have been saved to this day? The reconstruction of the 16th-century urban space was carried out using the retrogression method of 11 early plans and maps of Lublin, verified and supplemented with the latest archaeological findings, accurate architectural research (geo-radar, laser scanning) and an extensive archival query. Thanks to the Historical GIS technology, the research results have been published in the form of a universal platform (www.teatrnn.pl/unia-lubelska), with an interactive web-map of 16th-century Lublin (Google Maps API implementation) and modelling urban facilities with 3D technology (SketchUp & Unity). The designed technological solution is scalable, making it possible to search and combine individual records (e.g. person-event-address) as well as entire groups of records on higher hierarchical levels (social groups - sequences of events - multifaceted maps). The portal editing panel is dedicated to humanists (historians, journalists, sociologists, etc.) without specialist knowledge of GIS. The functions integrated with the CMS facilitate mapping the content collected in the database and embedding the narration in an adequate context of the historical space. As a result, editors preparing a thematic article have a searchable set of documents, facts, people and places at their disposal, and their task is to fill the narrative with descriptive content. This is a universal model for building deep maps and spatial narratives. Numéro de notice : A2022-373 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.culher.2021.11.001 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.1016/j.culher.2021.11.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100618
in Journal of Cultural Heritage > vol 53 (January–February 2022) . - pp 47 - 71[article]The point-descriptor-precedence representation for point configurations and movements / Amna Qayyum in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
PermalinkTrajectory and image-based detection and identification of UAV / Yicheng Liu in The Visual Computer, vol 37 n° 7 (July 2021)
PermalinkUnderstanding collective human movement dynamics during large-scale events using big geosocial data analytics / Junchuan Fan in Computers, Environment and Urban Systems, vol 87 (May 2021)
PermalinkDynamic human body reconstruction and motion tracking with low-cost depth cameras / Kangkan Wang in The Visual Computer, vol 37 n° 3 (March 2021)
PermalinkLightweight convolutional neural network-based pedestrian detection and re-identification in multiple scenarios / Xiao Ke in Machine Vision and Applications, vol 32 n° 2 (March 2021)
PermalinkPassive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkPyramidal framework: guidance for the next generation of GIS spatial-temporal models / Cyril Carré in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
PermalinkUnsupervised deep representation learning for real-time tracking / Ning Wang in International journal of computer vision, vol 129 n° 2 (February 2021)
PermalinkIntroducing diversion graph for real-time spatial data analysis with location based social networks / Sameera Kannangara (2021)
Permalink