Descripteur
Termes descripteurs IGN > végétation > forêt
forêt
Commentaire :
Bois (forêts), Boisé, Espace boisé, Espace forestier, Essence forestière, Forêt et sylviculture, Groupement forestier (écologie), Massif forestier, Milieu forestier, Peuplement forestier, Région forestière Ressource forestière, Zone forestière. Campagne, Espace naturel. >> Arbre, Archéologie des forêts, Écologie des forêts, Foresterie, Paysage forestier, Politique forestière, Produit forestier, Sylviculture. Voir aussi aux noms des forêts, par ex. : Fontainebleau, Forêt de (Seine-et-Marne) ; Bayerischer Wald (Allemagne). >>Terme(s) spécifique(s) : Biomasse des forêts, Canopée, Forêt domaniale, Forêt privée, Plante des forêts, Réserve forestière, Sol forestier, Station forestière -- Typologie. Source(s) : Grand Larousse universel . - Terminologie forestière / A. Métro, 1975. Equiv. LCSH : Forests and forestry. Domaine(s) : 577, 580. Voir aussi |


Etendre la recherche sur niveau(x) vers le bas
A GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand / Narissara Nuthammachot in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : A GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand Type de document : Article/Communication Auteurs : Narissara Nuthammachot, Auteur ; Dimitris Stratoulias, Auteur Année de publication : 2021 Article en page(s) : pp 212 - 225 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] climat
[Termes descripteurs IGN] forêt marécageuse
[Termes descripteurs IGN] historique des données
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] outil d'aide à la décision
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] processus d'analyse hiérarchisée
[Termes descripteurs IGN] Thaïlande
[Termes descripteurs IGN] tourbièreRésumé : (auteur) Forest fires are abrupt transformations of the natural ecosystem and management authorities are required to take preventive measures to tackle fire events. Geographic information system (GIS) is a powerful tool for providing information with a spatial context and analytical hierarchy process (AHP) is a well-established technique for multiple criteria decision making. In this study, GIS and AHP are combined to analyse seven fire-related factors related to climate, topography and human influence. Fire risk for a peat swamp forested area in Kuan Kreng, Nakorn Sri Thammarat province, Thailand is estimated in five categories. 705 historic fire events from 2006 to 2017 are used to validate our approach. 82% of the historic fire incidents occurred within the highest fire risk class categories while only a few omission errors were recorded. The combined approach of GIS and AHP techniques can yield useful fire risk maps, which can consequently be used for future planning and management of fire prone areas. Numéro de notice : A2021-083 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1611946 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1611946 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96832
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 212 - 225[article]Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning Type de document : Article/Communication Auteurs : Maryam Pourshamsi, Auteur ; Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] Gabon
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] Rotation Forest classification
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR parameters together with a small coverage of LiDAR height as training data. Numéro de notice : A2021-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.008 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96846
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 79 - 94[article]From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 / Yousra Hamrouni in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 Type de document : Article/Communication Auteurs : Yousra Hamrouni, Auteur ; Eric Paillassa, Auteur ; Véronique Chéret, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 76 - 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] base de données forestières
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] couvert forestier
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] France (administrative)
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] mise à jour de base de données
[Termes descripteurs IGN] populus (genre)
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Reliable estimates of poplar plantations area are not available at the French national scale due to the unsuitability and low update rate of existing forest databases for this short-rotation species. While supervised classification methods have been shown to be highly accurate in mapping forest cover from remotely sensed images, their performance depends to a great extent on the labelled samples used to build the models. In addition to their high acquisition cost, such samples are often scarce and not fully representative of the variability in class distributions. Consequently, when classification models are applied to large areas with high intra-class variance, they generally yield poor accuracies because of data shift issues. In this paper, we propose the use of active learning to efficiently adapt a classifier trained on a source image to spatially distinct target images with minimal labelling effort and without sacrificing the classification performance. The adaptation consists in actively adding to the initial local model new relevant training samples from other areas in a cascade that iteratively improves the generalisation capabilities of the classifier leading to a global model tailored to these different areas. This active selection relies on uncertainty sampling to directly focus on the most informative pixels for which the algorithm is the least certain of their class labels. Experiments conducted on Sentinel-2 time series revealed their high capacity to identify poplar plantations at a local scale with an average F-score ranging from 89.5% to 99.3%. For large area adaptation, the results showed that when the same number of training samples was used, active learning outperformed random sampling by up to 5% of the overall accuracy and up to 12% of the class F-score. Additionally, and depending on the class considered, the random sampling model required up to 50% more samples to achieve the same performance of an active learning-based model. Moreover, the results demonstrate the suitability of the derived global model to accurately map poplar plantations among other tree species with overall accuracy values up to 14% higher than those obtained with local models. The proposed approach paves the way for a national scale mapping in an operational context. Numéro de notice : A2021-013 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.018 date de publication en ligne : 20/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.018 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96417
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 76 - 100[article]Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]Variations in temperate forest biomass ratio along three environmental gradients are dominated by interspecific differences in wood density / Baptiste Kerfriden in Plant ecology, vol inconnu (January 2021)
![]()
[article]
Titre : Variations in temperate forest biomass ratio along three environmental gradients are dominated by interspecific differences in wood density Type de document : Article/Communication Auteurs : Baptiste Kerfriden, Auteur ; Jean-Daniel Bontemps , Auteur ; Jean-Michel Leban
, Auteur
Année de publication : 2021 Projets : XyloDensMap / Leban, Jean-Michel Article en page(s) : 20 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] biomasse forestière
[Termes descripteurs IGN] capacité de rétention d'eau du sol
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] densité du bois
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] pinophyta
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Background: Biomass ratio (BR) is a forest state variable allowing the conversion of forest volume of growing stock into biomass. Despite huge intraspecific variation in wood density depending on the biotic and abiotic environments of tree growth, this variable is most often considered a tree species constant in C budgets. The aims were i) to identify variations in BR along decorrelated water, soil nutrition and elevation gradients, ii) to test for differences between broadleaved and conifer tree species in BR variations, and iii) to weight the contribution of interspecific and intraspecific diversity in BR variations.
Methods: Analyses were based on massive wood density measurements performed with an X-ray medical scanner on 54,700 tree cores collected in 2016 and 2017 on the spatially systematic plot sampling design of the French national forest inventory (NFI) program.
Results: BR variations along the three gradients were found significant. BR hence decreased by 73 kg.m-3 (conifers) and 126 kg.m-3 (broadleaves) along a 180 mm gradient of soil water holding capacity (SWHC). It also increased by 153 kg.m-3 on average along the full gradient of soil basicity Index (SBI). A negative trend along elevation was also identified, with an average decrease by 155 kg.m-3 from 200 to 2000 m of elevation. Species distribution was found to be the main cause of BR variations along these gradients.
Conclusions: We report dependences of BR on both water (–), nutrient availability (+) and warmth (+) gradients, more acute in broadleaves than in conifers only for water availability. At the scale of the whole French forests, intraspecific variations in wood density do not affect BR estimations along these gradients. BR variations are mainly driven by the tree stand species composition along them.Numéro de notice : A2021-082 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11258-020-01106-0 date de publication en ligne : 03/01/2021 En ligne : https://link.springer.com/article/10.1007/s11258-020-01106-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96826
in Plant ecology > vol inconnu (January 2021) . - 20 p.[article]Competition overrides climate as trigger of growth decline in a mixed Fagaceae Mediterranean rear-edge forest / Alvaro Rubio-Cuadrado in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkDoes recent fire activity impact fire-related traits of Pinus halepensis Mill. and Pinus sylvestris L. in the French Mediterranean area? / Bastien Romero in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkExploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal / Santa Pandit in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkPolarization of light reflected by grass: modeling using visible-sunlit areas / Bin Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
PermalinkUnprecedented pluri-decennial increase in the growing stock of French forests is persistent and dominated by private broadleaved forests / Jean-Daniel Bontemps in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkAnalyzing the joint effect of forest management and wildfires on living biomass and carbon stocks in Spanish forests / Patricia Adame in Forests, vol 11 n°11 (November 2020)
PermalinkEffects of radiometric correction on cover type and spatial resolution for modeling plot level forest attributes using multispectral airborne LiDAR data / Wai Yeung Yan in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkEloge du paradigme synusial : alternative à la classification phytosociologique de la végétation forestière européenne, ouest-asiatique et nord-africaine / Bruno de Foucault in Evaxiana, n° 7 (2020)
PermalinkIs field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest / Luka Jurjević in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkObject-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
Permalink