Descripteur
Documents disponibles dans cette catégorie (433)



Etendre la recherche sur niveau(x) vers le bas
Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
![]()
[article]
Titre : Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection Type de document : Article/Communication Auteurs : David Alejandro Jimenez-Sierra, Auteur ; David Alfredo Quintero-Olaya, Auteur ; Juan Carlos Alvear-Muñoz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4410416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] détection de changement
[Termes IGN] graphe
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] Kappa de Cohen
[Termes IGN] lissage de données
[Termes IGN] processus gaussien
[Termes IGN] réseau sémantique
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] superpixelRésumé : (auteur) Graph-based methods are promising approaches for traditional and modern techniques in change detection (CD) applications. Nonetheless, some graph-based approaches omit the existence of useful priors that account for the structure of a scene, and the inter- and intra-relationships between the pixels are analyzed. To address this issue, in this article, we propose a framework for CD based on graph fusion and driven by graph signal smoothness representation. In addition to modifying the graph learning stage, in the proposed model, we apply a Gaussian mixture model for superpixel segmentation (GMMSP) as a downsampling module to reduce the computational cost required to learn the graph of the entire images. We carry out tests on 14 real cases of natural disasters, farming, and construction. The dataset contains homogeneous cases with multispectral (MS) and synthetic aperture radar (SAR) images, along with heterogeneous cases that include MS/SAR images. We compare our approach against probabilistic thresholding, unsupervised learning, deep learning, and graph-based methods. In terms of Cohen’s kappa coefficient, our proposed model based on graph signal smoothness representation outperformed state-of-the-art approaches in ten out of 14 datasets. Numéro de notice : A2022-379 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168126 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100643
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 4410416[article]A topology-based graph data model for indoor spatial-social networking / Mahdi Rahimi in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)
![]()
[article]
Titre : A topology-based graph data model for indoor spatial-social networking Type de document : Article/Communication Auteurs : Mahdi Rahimi, Auteur ; Mohammad Reza Malek, Auteur ; Christophe Claramunt, Auteur ; Thierry Le Pors, Auteur Année de publication : 2021 Article en page(s) : pp 2517 - 2539 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme du simplexe
[Termes IGN] espace intérieur
[Termes IGN] graphe
[Termes IGN] modèle topologique de données
[Termes IGN] modélisation spatiale
[Termes IGN] représentation géométrique
[Termes IGN] représentation graphique
[Termes IGN] réseau social géodépendantRésumé : (auteur) This paper introduces a simplex-based enriched graph data model integrating a discrete and place-based indoor spatial model with a spatial-social network. The proposed model incorporates similarity and relevance measures, exhibited from Q-analysis of simplicial complexes, facilitating data manipulation and revealing latent relations in a spatial-social network. It also uses an indoor-specific metric representing the ease of access to process spatial-social queries in indoor environments. The proposed model’s experimental implementation shows the quantitative advantage of using graph-based representation and the qualitative superiority of simplex-based enrichment in processing spatial-social queries in indoor environments. Numéro de notice : A2021-875 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1912349 Date de publication en ligne : 14/04/2021 En ligne : https://doi.org/10.1080/13658816.2021.1912349 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99138
in International journal of geographical information science IJGIS > vol 35 n° 12 (December 2021) . - pp 2517 - 2539[article]Binary space partitioning visibility tree for polygonal and environment light rendering / Hiroki Okuno in The Visual Computer, vol 37 n° 9 - 11 (September 2021)
![]()
[article]
Titre : Binary space partitioning visibility tree for polygonal and environment light rendering Type de document : Article/Communication Auteurs : Hiroki Okuno, Auteur ; Kei Iwasaki, Auteur Année de publication : 2021 Article en page(s) : pp 2499 - 2511 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre BSP
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] éclairage
[Termes IGN] éclairement lumineux
[Termes IGN] équation intégrale
[Termes IGN] intensité lumineuse
[Termes IGN] ombre
[Termes IGN] polygone
[Termes IGN] réflectance
[Termes IGN] visibilité (optique)Résumé : (auteur) In this paper, we present a geometric approach to render shadows for physically based materials under polygonal light sources. Direct illumination calculation from a polygonal light source involves the triple product integral of the lighting, the bidirectional reflectance distribution function (BRDF), and the visibility function over the polygonal domain, which is computation intensive. To achieve real-time performance, work on polygonal light shading exploits analytical solutions of boundary integrals along the edges of the polygonal light at the cost of lacking shadowing effects. We introduce a hierarchical representation for the precomputed visibility function to retain the merits of closed-form solutions for boundary integrals. Our method subdivides the polygonal light into a set of polygons visible from a point to be shaded. Experimental results show that our method can render complex shadows with a GGX microfacet BRDF from polygonal light sources at interactive frame rates. In addition, our visibility representation can be easily incorporated into environment lighting. Numéro de notice : A2021-644 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02181-8 Date de publication en ligne : 14/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02181-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98345
in The Visual Computer > vol 37 n° 9 - 11 (September 2021) . - pp 2499 - 2511[article]Constrained shortest path problems in bi-colored graphs: a label-setting approach / Amin AliAbdi in Geoinformatica [en ligne], vol 25 n° 3 (July 2021)
![]()
[article]
Titre : Constrained shortest path problems in bi-colored graphs: a label-setting approach Type de document : Article/Communication Auteurs : Amin AliAbdi, Auteur ; Ali Mohades, Auteur ; Mansoor Davoodi, Auteur Année de publication : 2021 Article en page(s) : pp 513 - 531 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] calcul d'itinéraire
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] graphe
[Termes IGN] programmation par contraintesRésumé : (auteur) Definition of an optimal path in the real-world routing problems is not necessarily the shortest one, because parameters such as travel time, safety, quality, and smoothness also played essential roles in the definition of optimality. In this paper, we use bi-colored graphs for modeling urban and heterogeneous environments and introduce variations of constraint routing problems. Bi-colored graphs are a kind of directed graphs whose vertices are divided into two subsets of white and gray. We consider two criteria, minimizing the length and minimizing the number of gray vertices and present two problems called gray vertices bounded shortest path problem and length bounded shortest path problem on bi-colored graphs. We propose an efficient time label-setting algorithm to solve these problems. Likewise, we simulate the algorithm and compare it with the related path planning methods on random graphs as well as real-world environments. The simulation results show the efficiency of the proposed algorithm. Numéro de notice : A2021-974 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-019-00385-8 Date de publication en ligne : 03/12/2019 En ligne : https://doi.org/10.1007/s10707-019-00385-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100393
in Geoinformatica [en ligne] > vol 25 n° 3 (July 2021) . - pp 513 - 531[article]A Bayesian displacement field approach to accurate registration of SAR images / Mingtao Ding in Geocarto international, vol 36 n° 9 ([15/05/2021])
PermalinkA new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
PermalinkA BiLSTM-CNN model for predicting users’ next locations based on geotagged social media / Yi Bao in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
PermalinkGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)
PermalinkGraph convolutional autoencoder model for the shape coding and cognition of buildings in maps / Xiongfeng Yan in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkA spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
Permalink3D urban scene understanding by analysis of LiDAR, color and hyperspectral data / David Duque-Arias (2021)
PermalinkDétection et reconstruction 3D d’arbres urbains par segmentation de nuages de points : apport de l’apprentissage profond / Victor Alteirac (2021)
PermalinkFinding the most navigable path in road networks / Ramneek Kaur in Geoinformatica [en ligne], vol 25 n° 1 (January 2021)
Permalink