Descripteur
Documents disponibles dans cette catégorie (440)



Etendre la recherche sur niveau(x) vers le bas
A graph-based approach for representing addresses in geocoding / Chen Zhang in Computers, Environment and Urban Systems, vol 100 (March 2023)
![]()
[article]
Titre : A graph-based approach for representing addresses in geocoding Type de document : Article/Communication Auteurs : Chen Zhang, Auteur ; Biao He, Auteur ; Renzhong Guo, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101937 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'adresses
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] graphe
[Termes IGN] stockage de données
[Termes IGN] toponymeRésumé : (auteur) Addresses, one of the most important geographical reference systems in natural languages, are usually used to search spatial objects in daily life. Geocoding concatenates text with georeferenced coordinates and is an essential middleware service in geographic information applications. Despite its importance, geocoding remains challenging with only text as input, hindering text matching in reference databases without the specific text. To optimize the storage and retrieval of addresses in databases, this work proposes a graph-based approach for representing addresses. The approach clarifies the characteristics of relative concepts, designs a graph structure and identifies modelling strategies. Furthermore, a schema is proposed to perform address matching and toponym disambiguation using an address graph. The model is implemented on a graph database, and experimental tasks are employed to demonstrate its effectiveness. The approach provides a new reference for developers when creating address databases. Numéro de notice : A2023-126 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101937 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101937 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102505
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101937[article]A geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
![]()
[article]
Titre : A geometry-aware attention network for semantic segmentation of MLS point clouds Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Yongyang Xu, Auteur ; Qinjun Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 138 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] figure géométrique
[Termes IGN] fonction de perte
[Termes IGN] graphe
[Termes IGN] Perceptron multicouche
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Semantic segmentation of mobile laser scanning (MLS) point clouds can provide meaningful 3 D semantic information of urban facilities for various applications. However, it still remains a challenge to extract accurate 3 D semantic information from MLS point cloud data due to its irregular 3 D geometric structure in a large-scale outdoor scene. To this end, this study develops a geometry-aware attention point network (GAANet) with geometric properties of the point cloud as a reference. Specifically, the proposed method first builds a graph-like region for each input point to establish the geometric correlation toward its neighbors for robustly descripting local geometry-aware features. Thereafter, the method introduces a novel multi-head attention mechanism to efficiently learn local discriminative features on the constructed graphs and a feature combination operation to capture both local and global geometric dependencies inside fused point features for significantly facilitating the segmentation of small or incomplete 3 D objects at point-level. Finally, an adaptive loss function is appended to handle class imbalance for the overall performance improvement. The validation experiments on two challenging benchmarks demonstrate the effectiveness and powerful generation ability of the proposed method, which achieves state-of-the-art performance with mean IoU of 65.09% and 95.20% in the Toronto-3D and Oakland 3-D MLS dataset, respectively. Numéro de notice : A2023-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2022.2111572 Date de publication en ligne : 24/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2111572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102309
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023) . - pp 138 - 161[article]A hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
![]()
[article]
Titre : A hierarchical multiview registration framework of TLS point clouds based on loop constraint Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Li Yan, Auteur ; Hong Xie, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de points
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Automatic registration of multiple point clouds is a significant preprocessing step for 3D computer vision tasks including semantic segmentation, 3D modelling, change detection, etc. Many methods were proposed to deal with this problem and yet most of them are not fully utilizing the redundant information offered by multiple common overlaps among point clouds. The existing methods are also inefficient when dealing with large-scale point clouds. In this paper, a novel automatic registration framework is presented to align point clouds efficiently and robustly. First, the overall number of scans is grouped into several scan-blocks by a proposed blocking strategy, and we build the pairwise relationship among scans through a fully connected graph in each scan-block. Second, perform loop-based coarse registration in each scan-block using a proposed false matches removal strategy. The proposed strategy can effectively identify grossly wrong scan-to-scan matches. Third, the minimum spanning tree is extracted from the graph, and ICP is applied along its edges. Moreover, the Lu–Milios algorithm is used to further optimize all poses at once by utilizing all redundant information in each scan-block. Finally, global block-to-block registration aligns all scan-blocks into a uniform coordinate reference. We test our framework on challenging WHU-TLS datasets, ETH datasets, and Robotic 3D Scan datasets to evaluate the efficiency, accuracy, as well as robustness. The experiment results show that our method achieves the state-of-the-art accuracy, while the time performance is improved by more than 30% compared with the state-of-the-art algorithms. Our source code is made available at https://github.com/WuHao-WHU/HL-MRF for benchmarking purposes. Numéro de notice : A2023-008 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.004 Date de publication en ligne : 19/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102112
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 65 - 76[article]Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
![]()
[article]
Titre : Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds Type de document : Article/Communication Auteurs : Zhilin Tian, Auteur ; Shihua Li, Auteur Année de publication : 2022 Article en page(s) : n° 5705111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois
[Termes IGN] branche (arbre)
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] feuille (végétation)
[Termes IGN] graphe
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial light detection and ranging (lidar) is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz -information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data. Numéro de notice : A2022-853 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3218603 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3218603 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102099
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5705111[article]A relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
![]()
[article]
Titre : A relation-augmented embedded graph attention network for remote sensing object detection Type de document : Article/Communication Auteurs : Shu Tian, Auteur ; Lihong Kang, Auteur ; Xiangwei Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1000718 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] graphe
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] relation sémantique
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Multiclass geospatial object detection in high spatial resolution remote sensing imagery (HSRI) is still a challenging task. The main reason is that the objects in HRSI are location-variable and semantic-confusable, which results in the difficulties in differentiating the complicated spatial patterns and deriving the implicitly semantic labels among different categories of objects. In this article, we propose a relation-augmented embedded graph attention network (EGAT), which enables the full exploitation of the underlying spatial and semantic relations among objects for improving the detection performance. Specifically, we first construct two sets of spatial and semantic graphs of objects–objects for object relations modeling. Second, a Siamese architecture-based embedding spatial and semantic graph attention network is designed for relations reasoning, which is implemented by introducing the long short-term memory (LSTM) mechanism into the EGAT, for learning the relations among different categories of intraobjects and interobjects. Driven by the spatial and semantic LSTM, the EGAT-LSTM can adaptively focus on the critical information of reason graphs for spatial–semantic correlation discrimination in the embedding non-Euclidean feature space. By this way, the EGAT-LSTM can effectively capture the global and local spatial–semantic relationships of objects–objects, and then produce relations-augmented features for improving the performance of object detection. We conduct comprehensive experiments on three public datasets for multiclass geospatial object detection. Our method achieves state-of-the-art performance, which demonstrates the superiority and effectiveness of the proposed method. Numéro de notice : A2022-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3073269 Date de publication en ligne : 18/05/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3073269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101788
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 1000718[article]Spatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)
PermalinkGeodesic geometry on graphs / Daniel Cizma in Discrete & computational geometry, vol 8 n° 1 (July 2022)
PermalinkContext-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
PermalinkInvariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
PermalinkTrue orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)
PermalinkGraph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkTowards expressive graph neural networks : Theory, algorithms, and applications / Georgios Dasoulas (2022)
PermalinkA topology-based graph data model for indoor spatial-social networking / Mahdi Rahimi in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)
Permalink