Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > théorie des graphes > noeud
noeudSynonyme(s)point nodalVoir aussi |
Documents disponibles dans cette catégorie (51)



Etendre la recherche sur niveau(x) vers le bas
A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-375 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]A graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : A graph attention network for road marking classification from mobile LiDAR point clouds Type de document : Article/Communication Auteurs : Lina Fang, Auteur ; Tongtong Sun, Auteur ; Shuang Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] noeud
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines. Numéro de notice : A2022-234 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.jag.2022.102735 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102735 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100124
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102735[article]SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Using vertices of a triangular irregular network to calculate slope and aspect / Guanghui Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : Using vertices of a triangular irregular network to calculate slope and aspect Type de document : Article/Communication Auteurs : Guanghui Hu, Auteur ; Chun Wang, Auteur ; Sijin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 382 - 404 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] géomorphologie
[Termes IGN] grille
[Termes IGN] loess
[Termes IGN] maillage
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle numérique de surface
[Termes IGN] noeud
[Termes IGN] pente
[Termes IGN] point d'appui
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain derivative calculations from triangulated irregular network (TIN)-based digital elevation models (DEMs) have been extensively explored in geomorphometry. However, most calculation methods focus on the triangulation facets of TIN-based DEMs and ignore the vertices. In fact, these vertices are the original sampling points from the terrain surface and serve as the basis for triangulation. In this study, we argue that terrain derivative calculations using TIN-based DEMs should focus on the vertices. Employing examples with slope and aspect, we applied the TIN vertex-based method to a mathematical surface and a real topography using TIN-based DEMs with a range of sampling point densities. We performed a comparative analysis of the TIN vertex-based, TIN facet-based, and grid-based methods. Assessments on the mathematical surface showed that the TIN vertex-based method achieved the highest accuracy among the three methods. Error analysis for the real landform case indicated that the TIN vertex-based method performed slightly better than the grid-based method for slope calculation and slightly worse than the grid-based method for aspect calculation. Among the three methods, the TIN facet-based method was most sensitive to error. The TIN vertex-based method can provide a reference for the slope and aspect calculation based on point clouds. Numéro de notice : A2022-165 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1933493 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1933493 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99788
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 382 - 404[article]A typification method for linear building groups based on stroke simplification / Xiao Wang in Geocarto international, vol 36 n° 15 ([15/08/2021])
![]()
[article]
Titre : A typification method for linear building groups based on stroke simplification Type de document : Article/Communication Auteurs : Xiao Wang, Auteur ; Dirk Burghardt, Auteur Année de publication : 2021 Article en page(s) : pp 1732 - 1751 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] alignement
[Termes IGN] bâtiment
[Termes IGN] généralisation du bâti
[Termes IGN] noeud
[Termes IGN] objet géographique linéaire
[Termes IGN] reconnaissance de formes
[Termes IGN] simplification de contour
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Linear building groups are common patterns and important local structures in large scale maps, which should be carefully generalized. This paper uses the idea of line simplification to typify linear building groups. Firstly, based on the stroke idea, the linear building groups are detected that each building group is related by only one stroke; the collinear and curvilinear patterns are distinguished by calculating the overlap rate between the defined auxiliary polygon and its oriented bounding box. Secondly, the stroke is simplified by removing one node in each iterative step; and the remained nodes are reallocated to the new positions, which serves as the centroids location of the newly typified buildings. Third, the representation (size, shape, elongation, and orientation) of the newly typified buildings are calculated by the geometry information of their corresponding parent buildings. The typification method can be carried out as a progressive process, which iterates over the three steps to derive continuous typification results. The method is tested on two building datasets, and the experimental results demonstrate that the proposed method can achieve good performance by well preserving the original linear patterns in the generalized building groups. Numéro de notice : A2021-569 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1669725 Date de publication en ligne : 26/09/2019 En ligne : https://doi.org/10.1080/10106049.2019.1669725 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98184
in Geocarto international > vol 36 n° 15 [15/08/2021] . - pp 1732 - 1751[article]A scalable method to construct compact road networks from GPS trajectories / Yuejun Guo in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
PermalinkA topology-preserving simplification method for 3D building models / Biao Wang in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
PermalinkGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)
PermalinkIdentification of common points in hybrid geodetic networks to determine vertical movements of the Earth’s crust / Kamil Kowalczyk in Journal of applied geodesy, vol 15 n° 2 (April 2021)
PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkPermalinkLearning embeddings for cross-time geographic areas represented as graphs / Margarita Khokhlova (2021)
PermalinkA novel orthoimage mosaic method using a weighted A∗ algorithm : Implementation and evaluation / Maoteng Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
PermalinkMulti-view performance capture of surface details / Nadia Robertini in International journal of computer vision, vol 124 n° 1 (August 2017)
PermalinkClassified and clustered data constellation: An efficient approach of 3D urban data management / Suhaibah Azri in ISPRS Journal of photogrammetry and remote sensing, vol 113 (March 2016)
Permalink