Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > théorie des graphes > noeud
noeudSynonyme(s)point nodalVoir aussi |
Documents disponibles dans cette catégorie (55)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Location-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
[article]
Titre : Location-aware neural graph collaborative filtering Type de document : Article/Communication Auteurs : Shengwen Li, Auteur ; Chenpeng Sun, Auteur ; Renyao Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1550 - 1574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] comportement
[Termes IGN] données localisées des bénévoles
[Termes IGN] filtrage d'information
[Termes IGN] jeu de données
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Collaborative filtering (CF) is initiated by representing users and items as vectors and seeks to describe the relationship between users and items at a profound level, thus predicting users’ preferred behavior. To address the issue that previous research ignored higher-order geographical interactions hidden in users’ historical behaviors, this paper proposes a location-aware neural graph collaborative filtering model (LA-NGCF), which incorporates location information of items for improving prediction performance. The model characterizes the interactions between items based on spatial decay law from a graph perspective and designs two strategies to capture the interaction effects of users and items considering node heterogeneity. An optimized loss function with spatial distances of items is also developed in the model. Extensive experiments are conducted on three publicly available real-world datasets to examine the effectiveness of our model. Results show that LA-NGCF achieves competitive performances compared with several state-of-the-art models, which suggests that location information of items is beneficial for improving the performance of personalized recommendations. This paper offers an approach to incorporate weighted interactions between items into CF algorithms and enriches the methods of utilizing geographical information for artificial intelligence applications. Numéro de notice : A2022-592 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2073594 Date de publication en ligne : 11/05/2022 En ligne : https://doi.org/10.1080/13658816.2022.2073594 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101292
in International journal of geographical information science IJGIS > vol 36 n° 8 (August 2022) . - pp 1550 - 1574[article]A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-460 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]Geodesic geometry on graphs / Daniel Cizma in Discrete & computational geometry, vol 68 n° 1 (July 2022)
[article]
Titre : Geodesic geometry on graphs Type de document : Article/Communication Auteurs : Daniel Cizma, Auteur ; Nati Linial, Auteur Année de publication : 2022 Article en page(s) : pp 298 - 347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] géodésie mathématique
[Termes IGN] graphe
[Termes IGN] noeudRésumé : (auteur) We investigate a graph theoretic analog of geodesic geometry. In a graph G=(V,E) we consider a system of paths P={Pu,v:u,v∈V} where Pu,v connects vertices u and v. This system is consistent in that if vertices y, z are in Pu,v, then the subpath of Pu,v between them coincides with Py,z. A map w:E→(0,∞) is said to induce P if for every u,v∈V the path Pu,v is w-geodesic. We say that G is metrizable if every consistent path system is induced by some such w. As we show, metrizable graphs are very rare, whereas there exist infinitely many 2-connected metrizable graphs. Numéro de notice : A2022-450 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1007/s00454-021-00345-w Date de publication en ligne : 26/01/2022 En ligne : http://dx.doi.org/10.1007/s00454-021-00345-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100832
in Discrete & computational geometry > vol 68 n° 1 (July 2022) . - pp 298 - 347[article]Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]Navigation network derivation for QR code-based indoor pedestrian path planning / Jinjin Yan in Transactions in GIS, vol 26 n° 3 (May 2022)
[article]
Titre : Navigation network derivation for QR code-based indoor pedestrian path planning Type de document : Article/Communication Auteurs : Jinjin Yan, Auteur ; Jinwoo Lee, Auteur ; Sisi Zlatanova, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1240 - 1255 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment public
[Termes IGN] navigation pédestre
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] positionnement en intérieur
[Termes IGN] QR code
[Termes IGN] scène intérieure
[Termes IGN] trajet (mobilité)Résumé : (auteur) With the development of cities, the indoor structures of contemporary public or commercial buildings are becoming increasingly complex. Accordingly, the need for indoor navigation has arisen. Among the indoor positioning technologies, quick response (QR) code, a low-cost, easily deployable, flexible, and efficient approach, has been used for indoor positioning and navigation purposes. A navigation network (model) is a precondition for pedestrian navigation path planning. However, no thorough research has been completed to investigate the relationship between navigation networks and locations of QR codes, which may cause ambiguities when deciding the closest node from the network that should be used for path computation. Specifically, QR codes are generally placed according to preferences or certain specifications whereas current agreed navigation network derivation approaches do not consider that. This article presents a navigation network derivation approach to address the issue by integrating QR code locations as nodes in navigation networks. The present approach is demonstrated in a shopping mall case. The results show that the approach can overcome the above-mentioned issue for indoor pedestrian path planning based on the QR code localization. Numéro de notice : A2022-476 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12912 Date de publication en ligne : 10/04/2022 En ligne : https://doi.org/10.1111/tgis.12912 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100823
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1240 - 1255[article]A graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)PermalinkSNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkUsing vertices of a triangular irregular network to calculate slope and aspect / Guanghui Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkTowards expressive graph neural networks : Theory, algorithms, and applications / Georgios Dasoulas (2022)PermalinkA typification method for linear building groups based on stroke simplification / Xiao Wang in Geocarto international, vol 36 n° 15 ([15/08/2021])PermalinkA scalable method to construct compact road networks from GPS trajectories / Yuejun Guo in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)PermalinkA topology-preserving simplification method for 3D building models / Biao Wang in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)PermalinkGraph convolutional networks by architecture search for PolSAR image classification / Hongying Liu in Remote sensing, vol 13 n° 7 (April-1 2021)PermalinkIdentification of common points in hybrid geodetic networks to determine vertical movements of the Earth’s crust / Kamil Kowalczyk in Journal of applied geodesy, vol 15 n° 2 (April 2021)PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)Permalink