Descripteur



Etendre la recherche sur niveau(x) vers le bas
Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India / Subrata Mondal in Geocarto international, Vol 35 n° 8 ([01/06/2020])
![]()
[article]
Titre : Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India Type de document : Article/Communication Auteurs : Subrata Mondal, Auteur ; Sujit Mandal, Auteur Année de publication : 2020 Article en page(s) : pp 818 - 856 Note générale : bibbliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] action anthropique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] lithologie
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] surveillance hydrologique
[Termes descripteurs IGN] théorie de Dempster-Shafer
[Termes descripteurs IGN] vulnérabilitéRésumé : (auteur) In the present study, data-driven evidential belief function model (belief function) was employed to generate landslides susceptibility index map of Darjeeling Himalaya considering 15 landslide causative factors, which grouped into six categories, i.e. geomorphological factors (elevation, aspect, slope, curvature), lithological factors (geology, soil, lineament density, distance to lineament), hydrologic factors (drainage density, distance to drainage, stream power index, topographic wetted index), triggering factor (rainfall), protective factor (normalized differential vegetation index) and anthropogenic factor (land use and land cover). Total 2079 landslide locations were mapped and randomly divided it into training datasets (70% landslide locations) and validation datasets (30% landslide locations). The resultant susceptibility map was divided into five different susceptibility zones i.e. very low, low, moderate, high and very high which covered 5.60%, 25.65%, 34.47%, 24.67% and 9.61% area respectively of the Darjeeling Himalaya. Receiver operating characteristics curve suggested that 80.20% prediction accuracy of the prepared map whereas frequency ratio plot indicated towards the ideal landslides susceptibility index map. Numéro de notice : A2020-274 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10106049.2018.1544288 date de publication en ligne : 13/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1544288 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95059
in Geocarto international > Vol 35 n° 8 [01/06/2020] . - pp 818 - 856[article]Assessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data / Divyesh Varade in Geocarto international, vol 35 n° 6 ([01/05/2020])
![]()
[article]
Titre : Assessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Onkar Dikshit, Auteur Année de publication : 2020 Article en page(s) : pp 641 - 662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] emissivité
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] hiver
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Sentinel-3
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] manteau neigeux
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] précision de détermination de surface
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] température au solRésumé : (auteur) In this study, we propose a modified thresholds method for the determination of land surface emissivity (LSE) for snow covered mountainous areas. The conventional Normalized Differenced Vegetation Index (NDVI) thresholds method (NDVITHM) does not discriminate the snow covered pixels with soil pixels in assigning the LSE based on NDVI thresholds. In the proposed approach, we incorporate different thresholding rules based on the Normalized Differenced Snow Index and the S3 index for incorporating separability in the LSE for the snow covered pixels. The LSE thus derived is used to determine the land surface temperature using the Single Channel Method. The approach was evaluated for a study area around the Kullu Valley in the lower Indian Himalayas for a dataset of the winter season of Landsat-8 multispectral data. The observed coefficient of determination values indicated that the proposed method yielded better results with respect to the conventional NDVITHM approach. Numéro de notice : A2020-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520928 date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520928 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94878
in Geocarto international > vol 35 n° 6 [01/05/2020] . - pp 641 - 662[article]Analytic hierarchy process based spatial biodiversity impact assessment model of highway broadening in Sikkim Himalaya / Polash Banerjee in Geocarto international, vol 35 n° 5 ([01/04/2020])
![]()
[article]
Titre : Analytic hierarchy process based spatial biodiversity impact assessment model of highway broadening in Sikkim Himalaya Type de document : Article/Communication Auteurs : Polash Banerjee, Auteur ; Mrinal K. Ghose, Auteur ; Ratika Pradham, Auteur Année de publication : 2020 Article en page(s) : pp 470 - 493 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] autoroute
[Termes descripteurs IGN] biodiversité
[Termes descripteurs IGN] étude d'impact
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] montagne
[Termes descripteurs IGN] parcelle forestière
[Termes descripteurs IGN] processus d'analyse hiérarchisée
[Termes descripteurs IGN] projet routierRésumé : (auteur) Spatial impacts of highway projects on biodiversity of North-Eastern Himalaya remains largely unexplored. Usually a number of ecological criteria are required in biodiversity impact assessment. However, a wide set of such criteria can be overwhelming for the decision-makers to assess the viability of such projects. SBIAM uses landscape metrics and experts’ opinion to create a single composite biodiversity value map. The weighted area loss under various project alternatives estimated from Biodiversity Value Map is compared to identify the most viable alternative. SBIAM uses AHP and curve fitting method in the biodiversity estimation. The study indicates that the highway broadening project in the study area will cause a moderate biodiversity loss. Sensitivity analysis of SBIAM indicates its robustness, and shows that forest patches near the highway are most sensitive to disturbances and patch proximity. SBIAM can be applied in varied spatial scales, terrains and development projects as a decision support tool. Numéro de notice : A2020-142 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520924 date de publication en ligne : 22/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520924 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94768
in Geocarto international > vol 35 n° 5 [01/04/2020] . - pp 470 - 493[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020051 SL Revue Centre de documentation Revues en salle Disponible Assessment of the Baspa basin glaciers mass budget using different remote sensing methods and modeling techniques / Vinay Kumar Gaddam in Geocarto international, vol 35 n° 3 ([01/03/2020])
![]()
[article]
Titre : Assessment of the Baspa basin glaciers mass budget using different remote sensing methods and modeling techniques Type de document : Article/Communication Auteurs : Vinay Kumar Gaddam, Auteur ; Anil V. Kulkarni, Auteur ; Anil Kumar Gupta, Auteur Année de publication : 2020 Article en page(s) : pp 296 - 316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] bilan de masse
[Termes descripteurs IGN] cheminement géodésique
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] fonte des glaces
[Termes descripteurs IGN] glacier
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] MNS ASTER
[Termes descripteurs IGN] MNS SRTM
[Termes descripteurs IGN] précipitation
[Termes descripteurs IGN] températureRésumé : (auteur) Glacial melt water is the key source for various socio-industrial and domestic activities in the Himalayas. Several recent studies suggest that glaciers are experiencing rapid melt. The glaciers health can be best assessed by mass balance. However, the mass balance investigations using in-situ methods for a large sample of glaciers are highly difficult in the Himalaya. Hence, remote sensing methods and modelling techniques are preferred. However, there is a lack of information on uncertainties associated with these methods in assessing the regional scale mass balance. Hence, these methods are applied to evaluate the regional scale mass budget of Baspa basin, Western Himalaya between 2000 and 2011. The total mass loss estimated using geodetic method amounts to −0.49 ± 0.1 gigatons, temperature index method to −0.43 ± 0.012 gigatons and AAR method to −0.36 ± 0.1 gigatons. Furthermore, this study highlights the limitations of these methods in mass loss evaluation in data scarce Himalayan regions. Numéro de notice : A2020-055 Affiliation des auteurs : non IGN Nature : Article DOI : 10.1080/10106049.2018.1516247 date de publication en ligne : 06/01/2020 En ligne : https://doi.org/10.1080/10106049.2018.1516247 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94568
in Geocarto international > vol 35 n° 3 [01/03/2020] . - pp 296 - 316[article]Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
![]()
[article]
Titre : Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya Type de document : Article/Communication Auteurs : Vijendra Kumar Pandey, Auteur ; Hamid Reza Pourghasemi, Auteur ; Milap Chand Sharma, Auteur Année de publication : 2020 Article en page(s) : pp 168 - 187 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autoroute
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] image IRS-LISS
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] Linear Imaging Self-Scanning System
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] mousson
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] séparateur à vaste marge
[Termes descripteurs IGN] test statistiqueRésumé : (Auteur) The main objective of this study to produce landslide susceptibility zones using maximum entropy (MaxEnt) and support vector machine (SVM) data-driven models along the Tipari to Ghuttu highway corridors in the Garhwal Himalaya. A landslide inventory has been prepared through field surveys and LISS-IV and Landsat 8 satellite images. The datasets of 85 landslides were categorised into training and test sets. In this study 11 landslide conditioning variables were used that are; altitude, slope angle, aspect, plan curvature, topographic wetness index, normalised difference vegetation index (NDVI), land use, soil texture, distance to rivers, distance to faults, and distance to the road. The result produced using MaxEnt and SVM model were subsequently validated using receiver operating characteristics curve (ROC) with test sets of landslide dataset. Both the models have good prediction capabilities. MaxEnt has ROC value of 0.78 while SVM has the highest prediction rate of 0.85. Numéro de notice : A2020-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1510038 date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1510038 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94519
in Geocarto international > vol 35 n° 2 [01/02/2020] . - pp 168 - 187[article]Assessment of ArcGIS based extraction of geoidal undulation compared to National Geospatial Intelligence Agency (NGA) model – A case study / Sher Muhammad in Journal of applied geodesy, vol 14 n° 1 (January 2020)
PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkClassification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data / Prateek Verma in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkIdentification and extraction of seasonal geodetic signals due to surface load variations / Stacy Larochelle in Journal of geophysical research : Solid Earth, vol 123 n° 12 (December 2018)
PermalinkMulti-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
PermalinkGIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya / Satish Kumar in Geocarto international, vol 32 n° 11 (November 2017)
PermalinkRecent variations of supraglacial lakes on the Baltoro Glacier in the central Karakoram Himalaya and its possible teleconnections with the pacific decadal oscillation / Bijeesh Kozhikkodan Veettil in Geocarto international, vol 31 n° 1 - 2 (January - February 2016)
PermalinkGPS and the 2015 Gorkha Earthquake / Mathias Lemmens in GIM international [en ligne], vol 29 n° 11 (November 2015)
PermalinkAccuracy assessment of MODIS/Terra snow cover product for parts of Indian Himalayas / Hari Prasad Chelamallu in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
PermalinkDemarcation of potential avalanche sites using remote sensing and ground observations: a case study of Gangotri glacier / Snehmani A. Bhardwaj in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
Permalink