Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Bangladesh
BangladeshVoir aussi |
Documents disponibles dans cette catégorie (14)



Etendre la recherche sur niveau(x) vers le bas
Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image / Taposh Mollick in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
![]()
[article]
Titre : Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image Type de document : Article/Communication Auteurs : Taposh Mollick, Auteur ; MD Golam Azam, Auteur ; Sabrina Karim, Auteur Année de publication : 2023 Article en page(s) : n° 100859 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] Bangladesh
[Termes IGN] classification non dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification pixellaire
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] occupation du sol
[Termes IGN] rendement agricole
[Termes IGN] segmentation d'image
[Termes IGN] utilisation du solRésumé : (auteur) Bangladesh is primarily an agricultural country where technological advancement in the agricultural sector can ensure the acceleration of economic growth and ensure long-term food security. This research was conducted in the south-western coastal zone of Bangladesh, where rice is the main crop and other crops are also grown. Land use and land cover (LULC) classification using remote sensing techniques such as the use of satellite or unmanned aerial vehicle (UAV) images can forecast the crop yield and can also provide information on weeds, nutrient deficiencies, diseases, etc. to monitor and treat the crops. Depending on the reflectance received by sensors, remotely sensed images store a digital number (DN) for each pixel. Traditionally, these pixel values have been used to separate clusters and classify various objects. However, it frequently generates a lot of discontinuity in a particular land cover, resulting in small objects within a land cover that provide poor image classification output. It is called the salt-and-pepper effect. In order to classify land cover based on texture, shape, and neighbors, Pixel-Based Image Analysis (PBIA) and Object-Based Image Analysis (OBIA) methods use digital image classification algorithms like Maximum Likelihood (ML), K-Nearest Neighbors (KNN), k-means clustering algorithm, etc. to smooth this discontinuity. The authors evaluated the accuracy of both the PBIA and OBIA approaches by classifying the land cover of an agricultural field, taking into consideration the development of UAV technology and enhanced image resolution. For classifying multispectral UAV images, we used the KNN machine learning algorithm for object-based supervised image classification and Maximum Likelihood (ML) classification (parametric) for pixel-based supervised image classification. Whereas, for unsupervised classification using pixels, we used the K-means clustering technique. For image analysis, Near-infrared (NIR), Red (R), Green (G), and Blue (B) bands of a high-resolution ground sampling distance (GSD) 0.0125m UAV image was used in this research work. The study found that OBIA was 21% more accurate than PBIA, indicating 94.9% overall accuracy. In terms of Kappa statistics, OBIA was 27% more accurate than PBIA, indicating Kappa statistics accuracy of 93.4%. It indicates that OBIA provides better classification performance when compared to PBIA for the classification of high-resolution UAV images. This study found that by suggesting OBIA for more accurate identification of types of crops and land cover, which will help crop management, agricultural monitoring, and crop yield forecasting be more effective. Numéro de notice : A2023-021 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rsase.2022.100859 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100859 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102224
in Remote Sensing Applications: Society and Environment, RSASE > vol 29 (January 2023) . - n° 100859[article]Scalable deep learning to identify brick kilns and aid regulatory capacity / Jihyeon Lee in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 118 n° 17 (27 April 2021)
![]()
[article]
Titre : Scalable deep learning to identify brick kilns and aid regulatory capacity Type de document : Article/Communication Auteurs : Jihyeon Lee, Auteur ; Nina R. Brooks, Auteur ; Fahim Tajwar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° e2018863118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Bangladesh
[Termes IGN] chaîne de traitement
[Termes IGN] image Worldview
[Termes IGN] pollution atmosphériqueMots-clés libres : briqueterie Résumé : (auteur) Improving compliance with environmental regulations is critical for promoting clean environments and healthy populations. In South Asia, brick manufacturing is a major source of pollution but is dominated by small-scale, informal producers who are difficult to monitor and regulate—a common challenge in low-income settings. We demonstrate a low-cost, scalable approach for locating brick kilns in high-resolution satellite imagery from Bangladesh. Our approach identifies kilns with 94.2% accuracy and 88.7% precision and extracts the precise GPS coordinates of every brick kiln across Bangladesh. Using these estimates, we show that at least 12% of the population of Bangladesh (>18 million people) live within 1 km of a kiln and that 77% and 9% of kilns are (illegally) within 1 km of schools and health facilities, respectively. Finally, we show how kilns contribute up to 20.4 μg/m3 of PM2.5 (particulate matter of a diameter less than 2.5 μm) in Dhaka when the wind blows from an unfavorable direction. We document inaccuracies and potential bias with respect to local regulations in the government data. Our approach demonstrates how machine learning and Earth observation can be combined to better understand the extent and implications of regulatory compliance in informal industry. Numéro de notice : A2021-793 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1073/pnas.2018863118 En ligne : https://doi.org/10.1073/pnas.2018863118 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99084
in Proceedings of the National Academy of Sciences of the United States of America PNAS > vol 118 n° 17 (27 April 2021) . - n° e2018863118[article]Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] Bangladesh
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] dégradation de l'environnement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] mangrove
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] réserve forestière
[Termes IGN] réserve naturelle
[Termes IGN] santé des forêts
[Termes IGN] série temporelle
[Termes IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 Date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions Type de document : Article/Communication Auteurs : Shahryar K. Ahmad, Auteur ; Faisal Hossain, Auteur ; Hisham Eldardiry, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2471 - 2480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bangladesh
[Termes IGN] climat tropical
[Termes IGN] eau de surface
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image PlanetScope
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] plan d'eau
[Termes IGN] radar à antenne synthétique
[Termes IGN] reconnaissance de surface
[Termes IGN] surveillance hydrologique
[Termes IGN] télédétection spatiale
[Termes IGN] zone humideRésumé : (auteur) Consistent estimation of water surface area from remote sensing remains challenging in regions such as South Asia with vegetation, mountainous topography, and persistent monsoonal cloud cover. High-resolution optical imagery, which is often used for global inundation mapping, is highly impacted by clouds, while synthetic aperture radar (SAR) imagery is not impacted by clouds and is affected by both topographic layover and vegetation. Here, we compare and contrast inundation extent measurements from visible (Landsat-8 and Sentinel-2) and SAR (Sentinel-1) imagery. Each data type (wavelength) has complementary strengths and weaknesses which were gauged separately over selected water bodies in Bangladesh. High-resolution cloud-free PlanetScope imagery at 3-m resolution was used as a reference to check the accuracy of each technique and data type. Next, the optical and radar images were fused for a rule-based water area classification algorithm to derive the optimal decision for the water mask. Results indicate that the fusion approach can improve the overall accuracy by up to 3.8%, 18.2%, and 8.3% during the wet season over using the individual products of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three sites, while providing increased observational frequency. The fusion-derived products resulted in overall accuracy ranging from 85.8% to 98.7% and Kappa coefficient varying from 0.61 to 0.83. The proposed SAR-visible fusion technique has potential for improving satellite-based surface water monitoring and storage changes, especially for smaller water bodies in humid tropical climate of South Asia. Numéro de notice : A2020-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950705 Date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950705 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94868
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2471 - 2480[article]Retrieval of tropical forest biomass information from ALOS PALSAR data / Mahmudur Rahman in Geocarto international, vol 28 n° 5-6 (August - October 2013)
![]()
[article]
Titre : Retrieval of tropical forest biomass information from ALOS PALSAR data Type de document : Article/Communication Auteurs : Mahmudur Rahman, Auteur ; Josaphat Tetuko Sri Sumantyo, Auteur Année de publication : 2013 Article en page(s) : pp 382 - 403 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] Bangladesh
[Termes IGN] biomasse
[Termes IGN] forêt tropicale
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moirée
[Termes IGN] régression
[Termes IGN] rétrodiffusionRésumé : (Auteur) Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data from different observation modes were analysed to determine (1) which observation mode most accurately retrieves tropical forest biomass information and (2) whether different modes, when considered together, yield improved results in comparison to identical data-sets analysed independently. We performed regression analysis to estimate above-ground forest biomass using PALSAR backscatter data for natural and planted forests in south-eastern Bangladesh. The coefficient of determination (r 2) was lower or equal to 0.499 (n = 70) when PALSAR data from different observation modes were separately considered, but increased sharply when one class (rubber) is dropped and average backscatter of fine beam single (FBS) and polarimetric (PLR) modes are used in the analysis. The results presented in this article are useful for both regional and global forest biomass inventories and fixing acquisition modes for planned L-band SAR missions. Numéro de notice : A2013-547 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2012.710652 Date de publication en ligne : 04/09/2012 En ligne : https://doi.org/10.1080/10106049.2012.710652 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32683
in Geocarto international > vol 28 n° 5-6 (August - October 2013) . - pp 382 - 403[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2013031 RAB Revue Centre de documentation En réserve 3L Disponible Observations of urban and suburban environments with global satellite scatterometer data / Son V. Nghiem in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 4 (July - August 2009)
PermalinkUse of TRMM in determining the climatic characteristics of rainfall over Bangladesh / M.N. Islam in Remote sensing of environment, vol 108 n° 3 (15/06/2007)
PermalinkThe derivation of a sub-canopy digital terrain model of a flooded forest using synthetic aperture radar / M.L. Imhoff in Photogrammetric Engineering & Remote Sensing, PERS, vol 56 n° 8 (august 1990)
PermalinkStudy of river flood hydrology in Bangladesh with AVHRR data / A. Ali in International Journal of Remote Sensing IJRS, vol 10 n° 12 (December 1989)
PermalinkAgricultural, hydrologic and oceanographic studies in Bangladesh with NOAA AVHRR data / A. Ali in International Journal of Remote Sensing IJRS, vol 8 n° 6 (June 1987)
PermalinkMonsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data / M.L. Imhoff in Photogrammetric Engineering & Remote Sensing, PERS, vol 53 n° 4 (april 1987)
PermalinkRegional seminar on the application of remote sensing techniques to coastal zone management and environmental monitoring, Dhaka, Bangladesh, 18-26 november 1986 / M.A.H. Pramanik in International Journal of Remote Sensing IJRS, vol 8 n° 4 (April 1987)
PermalinkReport of the workshop on high resolution satellite data, Jakarta, Indonesia, 19 - 21 October 1987 / Programme des Nations unies pour le développement PNUD UNDP/ESCAP (1987)
PermalinkPermalink