Descripteur
Documents disponibles dans cette catégorie (560)


Etendre la recherche sur niveau(x) vers le bas
Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)
![]()
[article]
Titre : Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression Type de document : Article/Communication Auteurs : Haoyu Wang, Auteur ; Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113088 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de régression
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Global urbanization changes land cover patterns and affects the living environment of humans. However, urbanization and its evolution process, i.e., conversions among diverse land covers, are hard to measure, as existing land cover maps usually have low temporal resolutions; conversely, long-term and temporally dense land cover maps, such as vegetation-impervious-soil decomposition maps base on MODIS, ignore the important land cover of cropland in urban evolution process (UEP). To resolve the issue, this study suggests a novel model named time-extended non-crop vegetation-impervious-cropland (Time V-I-C) to represent and quantify different stages of UEP; then, a normalized multi-objective T-ConvLSTM (NMT) method is proposed to unmix cropland, non-crop vegetation, and impervious based on the intra-annual remotely-sensed time series, and obtain their fractions in each pixel for generating UEP maps. Consequently, UEP maps from 2001 to 2018 are generated for two Chinese urban agglomerations, i.e., Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations. The mapping results have high accuracies with a small standard error of regression (SER) of 13.1%, small root mean square error (RMSE) of 12.6%, and small mean absolute error (MAE) of 8.4%, and the maps reveal the different UEP in the two urban agglomerations. Therefore, this study provides a new idea for expressing UEP and contributes to a wide range of urbanization studies and sustainable city development. Numéro de notice : A2022-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.rse.2022.113088 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113088 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101049
in Remote sensing of environment > vol 278 (September 2022) . - n° 113088[article]Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM / Jiehua Cai in Engineering Geology, vol 305 (August 2022)
![]()
[article]
Titre : Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM Type de document : Article/Communication Auteurs : Jiehua Cai, Auteur ; Lu Zhang, Auteur ; Jie Dong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 106730 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] déformation de surface
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image optique
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] MNS lidar
[Termes IGN] MNS SRTM
[Termes IGN] séisme
[Termes IGN] Setchouan (Chine)
[Termes IGN] surveillance géologiqueRésumé : (auteur) On 8th August 2017, a catastrophic Ms. 7.0 earthquake with a focal depth of 20 km struck the Jiuzhaigou County in Sichuan Province, China. It exerted a strong influence on the slope stability within the surrounding areas and triggered numerous secondary geohazards including rockfalls and other co-seismic landslides, which incurred drastic surface changes, and thus can be easily identified from cloud-free high-resolution optical imagery. Most of such landslides became stabilized shortly after the earthquake while others moving very slowly for years. In contrast, some slopes were destabilized without significant surface change into slow-moving landslides, which may pose long-term potential threats to people's life and property. Therefore, it is crucial to accurately identify these slow-moving landslides and regularly monitor their post-seismic activity. In this study, we employed the synthetic aperture radar interferometry (InSAR) techniques to detect and monitor slow-moving landslides after the earthquake in the Jiuzhaigou area, and analyzed the impacts of the earthquake on these landslides through integration of multi-source data (InSAR, Lidar, optical image, and field survey). As a result, 16 slow-moving landslides were detected by InSAR in the Jiuzhaigou area, including several historical landslides. The results of time-series InSAR analyses enabled identification of three kinds of landslide evolution modes affected by the earthquake, i.e. acceleration of deformation of pre-existing landslides, reactivation of dormant landslide, and remobilization of earthquake-triggered landslide. Each mode is supported by detailed analyses of multi-source data. The results demonstrated that satellite InSAR combined with high-resolution Lidar and optical data can provide a cost-effective approach of post-earthquake geohazards detection and monitoring. Numéro de notice : A2022-469 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.enggeo.2022.106730 Date de publication en ligne : 28/05/2022 En ligne : https://doi.org/10.1016/j.enggeo.2022.106730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100811
in Engineering Geology > vol 305 (August 2022) . - n° 106730[article]Simulation of the potential impact of urban expansion on regional ecological corridors: A case study of Taiyuan, China / Wei Hou in Sustainable Cities and Society, vol 83 (August 2022)
![]()
[article]
Titre : Simulation of the potential impact of urban expansion on regional ecological corridors: A case study of Taiyuan, China Type de document : Article/Communication Auteurs : Wei Hou, Auteur ; Wen Zhou, Auteur ; Jingyang Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103933 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte d'occupation du sol
[Termes IGN] Chansi (Chine)
[Termes IGN] corridor biologique
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] trame verte et bleueRésumé : (auteur) Urbanization caused by intensive land-use change is the main driving force of environment degradation. The development and protection of ecological corridors to connect green natural features has been recognized as an effective means for improving the resilience of cities. It is especially important for the cities which are in the rapid urbanizing process. In this paper, we used high-resolution spatial data to extract the distribution of ecological corridors by using the Least Cost Path model for the city of Taiyuan, China. Then, a prediction of the urban area for the year 2035 was achieved by using the SLEUTH model. Finally, we analyzed the negative impact of urban expansion on the corridors under current urbanization trends. Our results show that the regional corridors are mostly distributed in the western mountainous area, connecting large natural areas. There are also three ecological corridors crossing the city from the east to west. According to our prediction, Taiyuan will mainly grow southward along the urban edge and road network. As a result, two ecological corridors in the central and southern parts of Taiyuan will be largely occupied, especially the corridors in Xiaodian district which account for 72.51% of the total occupied corridor area. To avoid further conflict, the urbanization intensity along the sides of the corridors should be restricted to maintain corridors of a certain width. Our research findings can provide urban planners insightful suggestions for conservation and restoration of ecological networks and assist in spatial planning. Numéro de notice : A2022-487 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.103933 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103933 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100952
in Sustainable Cities and Society > vol 83 (August 2022) . - n° 103933[article]An accurate train positioning method using tightly-coupled GPS + BDS PPP/IMU strategy / Wei Jiang in GPS solutions, vol 26 n° 3 (July 2022)
![]()
[article]
Titre : An accurate train positioning method using tightly-coupled GPS + BDS PPP/IMU strategy Type de document : Article/Communication Auteurs : Wei Jiang, Auteur ; Mengyang Liu, Auteur ; Baigen Cai, Auteur Année de publication : 2022 Article en page(s) : n° 67 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] Chine
[Termes IGN] filtre de Kalman
[Termes IGN] phase
[Termes IGN] positionnement inertiel
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] signal GPS
[Termes IGN] simple différence
[Termes IGN] trainRésumé : (auteur) A new GNSS/IMU tightly coupled positioning system is introduced to train positioning. To fulfil a train control system’s aim of reducing the need to install trackside equipment, the GNSS precise point positioning (PPP) method is applied in place of the conventional differential GNSS method. As the railway environment has the character of long operational mileage and complex GNSS measurement conditions, the GPS and BDS constellations are combined with measurement processing to improve the system’s continuity and stability. Ultra-rapid GNSS orbit and clock product is used for real-time PPP. The GNSS-PPP and IMU are tightly coupled using an Extended Kalman filter with single-differenced ionospheric-free GPS + BDS carrier phase and pseudorange observations. The carrier phase ambiguities are estimated as “float” values every epoch to reduce the impact of GNSS signal loss-of-lock and cycle slips. A train experiment was conducted on the Qinghai-Tibet Railway to evaluate system performance. The results show that the proposed system has a better performance than the conventional methods, including GPS + BDS PPP, LC GPS + BDS PPP/IMU and TC GPS PPP/IMU, with 52.1%, 49.4% and 52.1%, respectively. The tightly-coupled GPS + BDS PPP/IMU system under conditions of partly blocked GNSS coverage was evaluated to evaluate the system's continuity. It was confirmed that the proposed system had more stable positioning results and higher positioning accuracy. Numéro de notice : A2022-361 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01250-2 Date de publication en ligne : 08/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01250-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100580
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 67[article]A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-460 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
PermalinkInteractive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
PermalinkStreet-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkDetecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
PermalinkExtracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area / Siming Yin in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
PermalinkLarge-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
PermalinkMapping monthly population distribution and variation at 1-km resolution across China / Zhifeng Cheng in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
PermalinkResearch on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)
Permalink