Descripteur



Etendre la recherche sur niveau(x) vers le bas
PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery Type de document : Article/Communication Auteurs : Xian Sun, Auteur ; Peijin Wang, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 50 - 65 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse contextuelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] objet géographique complexe
[Termes descripteurs IGN] rectangle englobant minimumRésumé : (auteur) In recent years, deep learning-based algorithms have brought great improvements to rigid object detection. In addition to rigid objects, remote sensing images also contain many complex composite objects, such as sewage treatment plants, golf courses, and airports, which have neither a fixed shape nor a fixed size. In this paper, we validate through experiments that the results of existing methods in detecting composite objects are not satisfying enough. Therefore, we propose a unified part-based convolutional neural network (PBNet), which is specifically designed for composite object detection in remote sensing imagery. PBNet treats a composite object as a group of parts and incorporates part information into context information to improve composite object detection. Correct part information can guide the prediction of a composite object, thus solving the problems caused by various shapes and sizes. To generate accurate part information, we design a part localization module to learn the classification and localization of part points using bounding box annotation only. A context refinement module is designed to generate more discriminative features by aggregating local context information and global context information, which enhances the learning of part information and improve the ability of feature representation. We selected three typical categories of composite objects from a public dataset to conduct experiments to verify the detection performance and generalization ability of our method. Meanwhile, we build a more challenging dataset about a typical kind of complex composite objects, i.e., sewage treatment plants. It refers to the relevant information from authorities and experts. This dataset contains sewage treatment plants in seven cities in the Yangtze valley, covering a wide range of regions. Comprehensive experiments on two datasets show that PBNet surpasses the existing detection algorithms and achieves state-of-the-art accuracy. Numéro de notice : A2021-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.015 date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.015 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96891
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 50 - 65[article]A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Zhice Fang, Auteur ; Yi Wang, Auteur ; Ling Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 321 - 347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] risque naturelRésumé : (auteur) This study introduces four heterogeneous ensemble-learning techniques, that is, stacking, blending, simple averaging, and weighted averaging, to predict landslide susceptibility in Yanshan County, China. These techniques combine several state-of-the-art classifiers of convolutional neural network, recurrent neural network, support vector machine, and logistic regression in specific ways to produce reliable results and avoid problems with the model selection. The study consists of three main steps. The first step establishes a spatial database consisting of 16 landslide conditioning factors and 380 historical landslide locations. The second step randomly selects training (70% of the total) and test (30%) datasets out of grid cells corresponding to landslide and non-slide locations in the study area. The final step constructs the proposed heterogeneous ensemble-learning methods for landslide susceptibility mapping. The proposed ensemble-learning methods show higher prediction accuracy than the individual classifiers mentioned above based on statistical measures. The blending ensemble-learning method achieves the highest overall accuracy of 80.70% compared to the other ensemble-learning methods. Numéro de notice : A2021-028 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808897 date de publication en ligne : 15/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808897 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96704
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 321 - 347[article]Extracting knowledge from legacy maps to delineate eco-geographical regions / Lin Yang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Extracting knowledge from legacy maps to delineate eco-geographical regions Type de document : Article/Communication Auteurs : Lin Yang, Auteur ; Xinming Li, Auteur ; Qinye Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 250 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] carte ancienne
[Termes descripteurs IGN] carte climatique
[Termes descripteurs IGN] cartographie écologique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] délimitation
[Termes descripteurs IGN] données cartographiques
[Termes descripteurs IGN] écorégion
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] logique floue
[Termes descripteurs IGN] sous ensemble flou
[Termes descripteurs IGN] zone tamponRésumé : (auteur) Legacy ecoregion maps contain knowledge on relationships between eco-region units and their environmental factors. This study proposes a method to extract knowledge from legacy area-class maps to formulate a set of fuzzy membership functions useful for regionalization. We develop a buffer zone approach to reduce the uncertainty of boundaries between eco-region units on area-class maps. We generate buffer zones with a Euclidean distance perpendicular to the boundaries, then the original eco-region units without buffer zones serve as the basic units to generate the probability density functions (PDF) of environmental variables. Then, we transform the PDFs to fuzzy membership functions for class-zones on the map. We demonstrate the proposed method with a climatic zone map of China. The results showed that the buffer zone approach effectively reduced the uncertainties of boundaries. A buffer distance of 10–15 km was recommended in this study. The climatic zone map generated based on the extracted fuzzy membership functions showed a higher spatial stratification heterogeneity (compared to the original map). Based on the fuzzy membership functions with climate data of 1961–2015, we also prepared an updated climatic zone map. This study demonstrates the prospects of using fuzzy membership functions to delineate area classes for regionalization purpose. Numéro de notice : A2021-025 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1806284 date de publication en ligne : 17/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1806284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96692
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 250 - 272[article]Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]RegNet: a neural network model for predicting regional desirability with VGI data / Wenzhong Shi in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : RegNet: a neural network model for predicting regional desirability with VGI data Type de document : Article/Communication Auteurs : Wenzhong Shi, Auteur ; Zhewei Liu, Auteur ; Zhenlin An, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 175 - 192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] niveau local
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau social géodépendantRésumé : (auteur) Volunteered geographic information can be used to predict regional desirability. A common challenge regarding previous works is that intuitive empirical models, which are inaccurate and bring in perceptual bias, are traditionally used to predict regional desirability. This results from the fact that the hidden interactions between user online check-ins and regional desirability have not been revealed and clearly modelled yet. To solve the problem, a novel neural network model ‘RegNet’ is proposed. The user check-in history is input into a neural network encoder structure firstly for redundancy reduction and feature learning. The encoded representation is then fed into a hidden-layer structure and the regional desirability is predicted. The proposed RegNet is data-driven and can adaptively model the unknown mappings from input to output, without presumed bias and prior knowledge. We conduct experiments with real-world datasets and demonstrate RegNet outperforms state-of-the-art methods in terms of ranking quality and prediction accuracy of rating. Additionally, we also examine how the structure of encoder affects RegNet performance and suggest on choosing proper sizes of encoded representation. This work demonstrates the effectiveness of data-driven methods in modelling the hidden unknown relationships and achieving a better performance over traditional empirical methods. Numéro de notice : A2021-023 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768261 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768261 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96526
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 175 - 192[article]The influence of sea-level changes on geodetic datums along the east coast of China / Yang Liu in Marine geodesy, vol 44 n° 1 (January 2021)
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkAutomated labeling of schematic maps by optimization with knowledge acquired from existing maps / Tian Lan in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkHow urban places are visited by social groups? Evidence from matrix factorization on mobile phone data / Chaogui Kang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkA novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkSTME: An effective method for discovering spatiotemporal multi‐type clusters containing events with different densities / Chao Wang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkBuilding facade reconstruction using crowd-sourced photos and two-dimensional maps / Wu Jie in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
PermalinkSpatio-temporal evolution, future trend and phenology regularity of net primary productivity of forests in Northeast China / Chunli Wang in Remote sensing, vol 12 n° 21 (November 2020)
Permalink