Descripteur



Etendre la recherche sur niveau(x) vers le bas
A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] flou
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3835[article]Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
![]()
[article]
Titre : Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea Type de document : Article/Communication Auteurs : Sunmin Lee, Auteur ; Moung-Jin Lee, Auteur ; Hyung-Sup Jung, Auteur ; Saro Lee, Auteur Année de publication : 2020 Article en page(s) : pp 1665 - 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] carte topographique
[Termes descripteurs IGN] cartographie des risques
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] réseau bayesien
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) In recent years, machine learning techniques have been increasingly applied to the assessment of various natural disasters, including landslides and floods. Machine learning techniques can be used to make predictions based on the relationships among events and their influencing factors. In this study, a machine learning approaches were applied based on landslide location data in a geographic information system environment. Topographic maps were used to determine the topographical factors. Additional soil and forest parameters were examined using information obtained from soil and forest maps. A total of 17 factors affecting landslide occurrence were selected and a spatial database was constructed. Naïve Bayes and Bayesian network models were applied to predict landslides based on selected risk factors. The two models showed accuracies of 78.3 and 79.8%, respectively. The results of this study provide a useful foundation for effective strategies to prevent and manage landslides in urban areas. Numéro de notice : A2020-658 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585482 date de publication en ligne : 16/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96130
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1665 - 1679[article]Sea surface temperature and high water temperature occurrence prediction using a long short-term memory model / Minkyu Kim in Remote sensing, vol 12 n° 21 (November 2020)
![]()
[article]
Titre : Sea surface temperature and high water temperature occurrence prediction using a long short-term memory model Type de document : Article/Communication Auteurs : Minkyu Kim, Auteur ; Hung Yang, Auteur ; Jonghwa Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3654 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] aquaculture
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] pêche
[Termes descripteurs IGN] réseau neuronal récurrent
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] température de surface de la merRésumé : (auteur) Recent global warming has been accompanied by high water temperatures (HWTs) in coastal areas of Korea, resulting in huge economic losses in the marine fishery industry due to disease outbreaks in aquaculture. To mitigate these losses, it is necessary to predict such outbreaks to prevent or respond to them as early as possible. In the present study, we propose an HWT prediction method that applies sea surface temperatures (SSTs) and deep-learning technology in a long short-term memory (LSTM) model based on a recurrent neural network (RNN). The LSTM model is used to predict time series data for the target areas, including the coastal area from Goheung to Yeosu, Jeollanam-do, Korea, which has experienced frequent HWT occurrences in recent years. To evaluate the performance of the SST prediction model, we compared and analyzed the results of an existing SST prediction model for the SST data, and additional external meteorological data. The proposed model outperformed the existing model in predicting SSTs and HWTs. Although the performance of the proposed model decreased as the prediction interval increased, it consistently showed better performance than the European Center for Medium-Range Weather Forecast (ECMWF) prediction model. Therefore, the method proposed in this study may be applied to prevent future damage to the aquaculture industry. Numéro de notice : A2020-721 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12213654 date de publication en ligne : 07/11/2020 En ligne : https://doi.org/10.3390/rs12213654 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96311
in Remote sensing > vol 12 n° 21 (November 2020) . - n° 3654[article]Detecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Detecting abandoned farmland using harmonic analysis and machine learning Type de document : Article/Communication Auteurs : Heeyeun Yoon, Auteur ; Soyoun Kim, Auteur Année de publication : 2020 Article en page(s) : pp 201 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse harmonique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] gestion des ressources
[Termes descripteurs IGN] inventaire
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Normalized Difference Water Index
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] production agricole
[Termes descripteurs IGN] Soil Adjusted Vegetation Index
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) It is critical to inventory abandoned farmland soon after it is generated, to better manage agricultural resources and to prevent negative consequences that would otherwise follow. This study aims to distinguish abandoned farmlands from active croplands—rice paddy and agricultural fields—by discerning the phenological trajectories over a short-term period of three years (Jan. 2016 to Dec. 2018) in Gwanyang City in South Korea. For Support Vector Machine (SVM) classification, we fully utilized parameters derived from harmonic analyses of the three vegetation indices (VIs: NDVI, NDWI, and SAVI) extracted from Sentinel-2A imagery. The harmonic analyses proved that higher-order sinusoid components produced better fitting to explain the trajectory of the VIs—the maximum adjusted was 95.23%—and the multiple VIs diversified the attributes for the classifications. Consequently, the higher-order harmonic components and the additional VIs increased the accuracy when used in SVM classification. The best performing classification was achieved with a composite of harmonic terms derived from the three VIs, yielding overall accuracy of 90.72%, Kappa index of 0.858, and user’s accuracy for abandoned farmland of 93.40%. The proposed method here would greatly improve the process of detecting abandoned farmland, despite a relatively short observation period, and enable a rapid response to the occurrence of abandonment. Numéro de notice : A2020-356 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.021 date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95243
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 201 - 212[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Error-regulated multi-pass DInSAR analysis for landslide risk assessment / Jung Rack Kim in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)
![]()
[article]
Titre : Error-regulated multi-pass DInSAR analysis for landslide risk assessment Type de document : Article/Communication Auteurs : Jung Rack Kim, Auteur ; HyeWon Yun, Auteur ; Stephan van Gasselt, Auteur ; YunSoo Choi, Auteur Année de publication : 2018 Article en page(s) : pp 189 - 202 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] interferométrie différentielle
[Termes descripteurs IGN] interféromètrie par radar à antenne synthétique
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] montagne
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] surveillance géologique
[Termes descripteurs IGN] télédétection en hyperfréquence
[Termes descripteurs IGN] teneur en vapeur d'eauRésumé : (Auteur) Landslide risk assessment based on Differential Interferometric SAR analyses (DInSAR) is associated with a number of error effects. We here approach the problem of assessing landslide risks over mountainous areas, where DInSAR observations are often influenced by orographic effects and inaccurate base topographies by employing a dedicated error compensation. In order to obtain accurate information on surface deformation, we apply corrections for DInSAR interferograms using high-resolution base topography and water vapor information obtained from a satellite radiometer. We observe that the corrected DInSAR output is in accordance with the environmental context as inferred by geological and geomorphological settings. It is feasible to better quantify landslide monitoring schemes whenever high- accuracy atmospheric error maps and a methodology to effectively compensate for external errors in DInSAR interferograms are available. The approach in this study can be further upgraded for future SAR-based assessments and various error correction approaches for even more precise landslide risk assessments. Numéro de notice : A2018-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.4.189 date de publication en ligne : 01/04/2018 En ligne : https://doi.org/10.14358/PERS.84.4.189 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89688
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 4 (April 2018) . - pp 189 - 202[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018041 SL Revue Centre de documentation Revues en salle Disponible Development of a 3D underground cadastral system with indoor mapping for as-built BIM: the case study of Gangnam subway station in Korea / Kim Sangmin in Sensors, vol 15 n° 12 (December 2015)
PermalinkApplication of fuzzy combination operators to flood vulnerability assessments in Seoul, Korea / Moung-Jin Lee in Geocarto international, vol 30 n° 9 - 10 (October - November 2015)
PermalinkGBAS ionospheric threat model assessment for category I operation in the Korean region / Minchan Kim in GPS solutions, vol 19 n° 3 (July 2015)
PermalinkSpatial and temporal change in landslide hazard by future climate change scenarios using probabilistic-based frequency ratio model / Moung-Jin Lee in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
PermalinkEffects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm / Jaehoon Jung in ISPRS Journal of photogrammetry and remote sensing, vol 81 (July 2013)
PermalinkUsing gravity and topography-implied anomalies to assess data requirements for precise geoid computation / Christopher Jekeli in Journal of geodesy, vol 83 n° 12 (December 2009)
PermalinkExploring spatially prioritized parameters of Feng-Shui from tomb footprint / J. Um in International journal of geographical information science IJGIS, vol 23 n°3-4 (march - april 2009)
PermalinkDevelopments in South & East Asia: Space image acquisition for geospatial intelligence / Gordon Petrie in Geoinformatics, vol 10 n° 3 (01/04/2007)
PermalinkLandslide susceptibility mapping using GIS and the weight-of-evidence model / S. Lee in International journal of geographical information science IJGIS, vol 18 n° 8 (december 2004)
PermalinkTracking road centrelines from high resolution remote sensing images by least squares correlation matching / S.R. Park in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 12 (December 2004)
Permalink