Descripteur
Documents disponibles dans cette catégorie (200)



Etendre la recherche sur niveau(x) vers le bas
Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis / Jinpei Chen in GPS solutions, vol 26 n° 3 (July 2022)
![]()
[article]
Titre : Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis Type de document : Article/Communication Auteurs : Jinpei Chen, Auteur ; Nan Zhi, Auteur ; Haofan Liao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse spectrale
[Termes IGN] apprentissage profond
[Termes IGN] carte ionosphérique mondiale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction ionosphérique
[Termes IGN] modèle dynamique
[Termes IGN] positionnement par GNSS
[Termes IGN] temps de convergence
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The widely used GNSS correction services for high precision positioning take advantage of accurate real-time TEC forecasting based on vertical total electron content (VTEC) maps. The methods for modeling and forecasting are mainly based on overly simplified assumptions, which in principle cannot reflect the real situations due to limitations of the mathematical formulations. Therefore, these methods cannot comprehensively capture the features of ionospheric TEC in spatial–temporal series. To overcome the problems caused by such assumptions, we combine ConvLSTM (convolutional long short-term memory) with spectrum analysis. The method allows the extraction of high-resolution spatial–temporal patterns of the ionospheric VTEC maps and accelerates the convergence time of neural networks. Extensive experiments have been carried out for short- and long-term forecasting and demonstrated that the performance of our method is better than other state-of-the-art models developed for various time series analysis methods. Based on the data from global ionospheric maps (GIMs) products, the results show that the root-mean-square error (RMSE) of global VTEC forecasting by our method substantially improves for two hours intervals over the years 2015, 2016, 2017 and 2019 compared to existing methods, specifically, 20–50% reduction on 1 or 2 h forecasting in terms of RMSE. In addition, the method is sufficient to support real-time forecasting since it takes less than one second to output global forecasting solutions. With these properties, we can facilitate real-time and highly accurate ionosphere correction services beneficial to numerous GNSS correct services and positioning terminals. Numéro de notice : A2022-378 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01253-z Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01253-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100638
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 69[article]Regional ionospheric corrections for high accuracy GNSS positioning / Tam Dao in Remote sensing, vol 14 n° 10 (May-2 2022)
![]()
[article]
Titre : Regional ionospheric corrections for high accuracy GNSS positioning Type de document : Article/Communication Auteurs : Tam Dao, Auteur ; Ken Harima, Auteur ; Brett Anthony Carter, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Australie
[Termes IGN] Continuously Operating Reference Station network
[Termes IGN] correction ionosphérique
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèriqueRésumé : (auteur) Centimetre-level accurate ionospheric corrections are required for a high accuracy and rapid convergence of Precise Point Positioning (PPP) GNSS positioning solutions. This research aims to evaluate the accuracy of a local/regional ionospheric delay model using a linear interpolation method across Australia. The accuracy of the ionospheric corrections is assessed as a function of both different latitudinal regions and the number and spatial density of GNSS Continuously Operating Reference Stations (CORSs). Our research shows that, for a local region of 5° latitude ×10° longitude in mid-latitude regions of Australia (~30° to 40°S) with approximately 15 CORS stations, ionospheric corrections with an accuracy of 5 cm can be obtained. In Victoria and New South Wales, where dense CORS networks exist (nominal spacing of ~100 km), the average ionospheric corrections accuracy can reach 2 cm. For sparse networks (nominal spacing of >200 km) at lower latitudes, the average accuracy of the ionospheric corrections is within the range of 8 to 15 cm; significant variations in the ionospheric errors of some specific satellite observations during certain periods were also found. In some regions such as Central Australia, where there are a limited number of CORSs, this model was impossible to use. On average, centimetre-level accurate ionospheric corrections can be achieved if there are sufficiently dense (i.e., nominal spacing of approximately 200 km) GNSS CORS networks in the region of interest. Based on the current availability of GNSS stations across Australia, we propose a set of 15 regions of different ionospheric delay accuracies with extents of 5° latitude ×10° longitude covering continental Australia. Numéro de notice : A2022-400 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14102463 Date de publication en ligne : 20/05/2022 En ligne : https://doi.org/10.3390/rs14102463 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100703
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2463[article]A novel ionospheric mapping function modeling at regional scale using empirical orthogonal functions and GNSS data / Peng Chen in Journal of geodesy, vol 96 n° 5 (May 2022)
![]()
[article]
Titre : A novel ionospheric mapping function modeling at regional scale using empirical orthogonal functions and GNSS data Type de document : Article/Communication Auteurs : Peng Chen, Auteur ; Rong Wang, Auteur ; Zhihao Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] décomposition en fonctions orthogonales empiriques
[Termes IGN] données GNSS
[Termes IGN] ionosphère
[Termes IGN] modèle ionosphérique
[Termes IGN] série temporelle
[Termes IGN] teneur totale en électrons
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The ionospheric mapping function (MF) converts the line-of-sight slant total electron content (STEC) into the vertical total electron content (VTEC) and vice versa, and it is an important function in the creation and use of ionospheric models. Most of the existing MFs are only related to satellite elevation angle, the accuracy is low, and it is necessary to establish a MF with higher accuracy. Therefore, this paper considers the differences of MF for different local time (LT) and DOY (day of year), and uses the Global Navigation Satellite Systems (GNSS) STEC observation data from International GNSS Service (IGS) tracking stations in the northern hemisphere mid-latitude region in 2016–2020 to establish a novel MF model. First, we retrieve the mapping coefficient αh for different LT and DOY, where the results show significant correlation with LT and DOY, and other periodic variations. Then, we use the empirical orthogonal functions (EOF) to decompose the time series, and the first four order EOF components can describe 98.31% of the total variability. Finally, the periodic function is used to fit the time series of EOF, and a small number of model coefficients are obtained. This work employs the differential STEC of 28 IGS tracking stations in the mid-latitudes of the northern hemisphere in 2020 to verify the accuracy of the new MF and compare it with the widely used modified single-layer model (MSLM) MF. The results show that the accuracy of the new MF is higher than the existing MSLM MF when using JPLG (Jet Propulsion Laboratory’s final Global Ionospheric Maps) to convert VTEC to STEC. Compared with MSLM MF, the RMS of the new MF is reduced by 0.24 TECU on average, and the maximum reduction is close to 0.4 TECU (~ 25%). Among the 28 tracking stations that participated in the verification, the new MF is better than MSLM MF on most days, with 7 stations reaching 100% and 20 stations exceeding 95%. For nearly 60% of the days in 2020, the accuracy of the new MF for all tracking stations is better than that of MSLM MF. Numéro de notice : A2022-340 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01624-x Date de publication en ligne : 30/04/2022 En ligne : https://doi.org/10.1007/s00190-022-01624-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100512
in Journal of geodesy > vol 96 n° 5 (May 2022) . - n° 34[article]Improving the (re-)convergence of multi-GNSS real-time precise point positioning through regional between-satellite single-differenced ionospheric augmentation / Ahao Wang in GPS solutions, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Improving the (re-)convergence of multi-GNSS real-time precise point positioning through regional between-satellite single-differenced ionospheric augmentation Type de document : Article/Communication Auteurs : Ahao Wang, Auteur ; Yize Zhang, Auteur ; Junping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 39 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement ponctuel précis
[Termes IGN] temps de convergence
[Termes IGN] temps réel
[Termes IGN] teneur verticale totale en électrons
[Termes IGN] transformation polynomialeRésumé : (auteur) The long (re-)convergence time seriously limits many applications of real-time precise point positioning (RTPPP) in challenging environments like urban vehicle navigation and hazards monitoring. Thus, we proposed a real-time fast-positioning model by introducing the regional between-satellite single-differenced (SD) ionospheric constraints into the undifferenced and uncombined PPP (UU-PPP). The line-of-sight ionospheric observables are extracted by the multi-GNSS (GPS + Galileo) UU-PPP method. The polynomial function with simple structure and high efficiency is applied to establish the real-time regional between-satellite SD ionospheric vertical total electron content (VTEC) model. The differential slant total electron content (dSTEC) variations retrieved from three VTEC models are validated with the between-satellite SD and epoch-differenced geometry-free combinations of dual-frequency phase observations. The average RMS values are 0.77, 0.78 and 0.47 TEC unit for the CLK93 real-time VTEC, CODE final GIM and regional between-satellite SD ionospheric VTEC model, respectively. In the positioning domain, the data of ten stations for 12 consecutive days in 2020 were used for implementing kinematic RTPPP with single-frequency (SF) and dual-frequency (DF) observations. Compared with the GPS + Galileo SF-RTPPP based on the GRoup And PHase Ionospheric Correction model, the initialization time of the SD ionospheric-constrained (SDIC) SF-RTPPP when converged to 0.2 m at the 68% confidence level can be improved from 58 to 32 min in horizontal and 72 to 49 min in vertical, and its positioning accuracy can be improved by 29.7 and 20.3% in the horizontal and vertical components, respectively. Meanwhile, the re-convergence errors of SDIC SF-RTPPP from the first epoch can be maintained at 0.15 m in three components. As to GPS + Galileo SDIC DF-RTPPP, the re-convergence time when converged to 0.1 m can be lower than 3 min in horizontal and 9 min in vertical, and the re-convergence errors at the first epoch could even be lower than 0.15 m in horizontal. Hence, the new positioning model can maintain high accuracy and improve the continuity of real-time kinematic positioning in a short time when the number of tracked satellites in the urban or canyon environment was greatly dropped due to signal blocking. Numéro de notice : A2022-107 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01229-z Date de publication en ligne : 21/02/2022 En ligne : https://doi.org/10.1007/s10291-022-01229-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99608
in GPS solutions > vol 26 n° 2 (April 2022) . - n° 39[article]Validating the impact of various ionosphere correction on mid to long baselines and point positioning using GPS dual-frequency receivers / Alaa A. Elghazouly in Journal of applied geodesy, vol 16 n° 2 (April 2022)
![]()
[article]
Titre : Validating the impact of various ionosphere correction on mid to long baselines and point positioning using GPS dual-frequency receivers Type de document : Article/Communication Auteurs : Alaa A. Elghazouly, Auteur ; Mohamed Doma, Auteur ; Ahmed Sedeek, Auteur Année de publication : 2022 Article en page(s) : pp 81 - 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] ligne de base
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur bifréquence
[Termes IGN] récepteur GPS
[Termes IGN] tempête magnétique
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) Due to the ionosphere delay, which has become the dominant GPS error source, it is crucial to remove the ionospheric effect before estimating point coordinates. Therefore, different agencies started to generate daily Global Ionosphere Maps (GIMs); the Vertical Total Electron Content (VTEC) values represented in GIMs produced by several providers can be used to remove the ionosphere error from observations. In this research, an analysis will be carried with three sources for VTEC maps produced by the Center for Orbit Determination in Europe (CODE), Regional TEC Mapping (RTM), and the International Reference Ionosphere (IRI). The evaluation is focused on the effects of a specific ionosphere GIM correction on the precise point positioning (PPP) solutions. Two networks were considered. The first network consists of seven Global Navigation Satellite Systems (GNSS) receivers from (IGS) global stations. The selected test days are six days, three of them quiet, and three other days are stormy to check the influence of geomagnetic storms on relative kinematic positioning solutions. The second network is a regional network in Egypt. The results show that the calculated coordinates using the three VTEC map sources are far from each other on stormy days rather than on quiet days. Also, the standard deviation values are large on stormy days compared to those on quiet days. Using CODE and RTM IONEX file produces the most precise coordinates after that the values of IRI. The elimination of ionospheric biases over the estimated lengths of many baselines up to 1000 km has resulted in positive findings, which show the feasibility of the suggested assessment procedure. Numéro de notice : A2022-250 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0040 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.1515/jag-2021-0040 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100203
in Journal of applied geodesy > vol 16 n° 2 (April 2022) . - pp 81 - 90[article]Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides / Yang Yang in IEEE Aerospace and Electronic Systems Magazine, vol 37 n° 2 (February 2022)
PermalinkCo-seismic ionospheric disturbances following the 2016 West Sumatra and 2018 Palu earthquakes from GPS and GLONASS measurements / Mokhamad Nur Cahyadi in Remote sensing, vol 14 n° 2 (January-2 2022)
PermalinkIonospheric corrections tailored to the Galileo High Accuracy Service / Adria Rovira-Garcia in Journal of geodesy, vol 95 n° 12 (December 2021)
PermalinkIonospheric tomographic common clock model of undifferenced uncombined GNSS measurements / German Olivares-Pulido in Journal of geodesy, vol 95 n° 11 (November 2021)
PermalinkOn the TEC bias of altimeter satellites / Francisco Azpilicueta in Journal of geodesy, vol 95 n° 10 (October 2021)
PermalinkPredicting total electron content in ionosphere using vector autoregression model during geomagnetic storm / Sumitra Iyer in Journal of applied geodesy, vol 15 n° 4 (October 2021)
PermalinkEstimation of code observation-specific biases (OSBs) for the modernized multi-frequency and multi-GNSS signals: an undifferenced and uncombined approach / Teng Liu in Journal of geodesy, vol 95 n° 8 (August 2021)
PermalinkOrdered subsets-constrained ART algorithm for ionospheric tomography by combining VTEC data / Dunyong Zheng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
PermalinkGPS satellite differential code bias estimation with current eleven low earth orbit satellites / Xingxing Li in Journal of geodesy, vol 95 n° 7 (July 2021)
PermalinkThree-dimensional reconstruction of seismo-traveling ionospheric disturbances after March 11, 2011, Japan Tohoku earthquake / Changzhi Zhai in Journal of geodesy, vol 95 n° 7 (July 2021)
Permalink