Descripteur
Termes IGN > géomatique > base de données localisées > attribut
attributSynonyme(s)données attributairesVoir aussi |
Documents disponibles dans cette catégorie (86)



Etendre la recherche sur niveau(x) vers le bas
Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
![]()
[article]
Titre : Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments Type de document : Article/Communication Auteurs : Sercan Gülci, Auteur ; Afiz Hulusi Acar, Auteur ; Abdullah E. Akay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 560 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] attribut géomètrique
[Termes IGN] coefficient de corrélation
[Termes IGN] courbe
[Termes IGN] matrice de confusion
[Termes IGN] montagne
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] tracé routier
[Termes IGN] Turquie
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Road curve attributes can be determined by using Geographic Information System (GIS) to be used in road vehicle traffic safety and planning studies. This study involves analyzing the GIS-based estimation accuracy in the length, radius and the number of small horizontal road curves on a two-lane rural road and a forest road. The prediction success of horizontal curve attributes was investigated using digitized raw and generalized/simplified road segments. Two different roads were examined, involving 20 test groups and two control groups, using 22 datasets obtained from digitized and surveyed roads based on satellite imagery, GIS estimates, and field measurements. Confusion matrix tables were also used to evaluate the prediction accuracy of horizontal curve geometry. F-score, Mathews Correlation Coefficient, Bookmaker Informedness and Balanced Accuracy were used to investigate the performance of test groups. The Kruskal–Wallis test was used to analyze the statistical relationships between the data. Compared to the Bezier generalization algorithm, the Douglas–Peucker algorithm showed the most accurate horizontal curve predictions at generalization tolerances of 0.8 m and 1 m. The results show that the generalization tolerance level contributes to the prediction accuracy of the number, curve radius, and length of the horizontal curves, which vary with the tolerance value. Thus, this study underlined the importance of calculating generalizations and tolerances following a manual road digitization. Numéro de notice : A2022-847 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110560 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.3390/ijgi11110560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102083
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 560[article]Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
![]()
[article]
Titre : Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis Type de document : Article/Communication Auteurs : Chuan Yin, Auteur ; Binyu Zhang, Auteur ; Wanzeng Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] attribut sémantique
[Termes IGN] granularité (informatique)
[Termes IGN] granularité d'image
[Termes IGN] matrice de co-occurrence
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] relation sémantique
[Termes IGN] réseau sémantique
[Termes IGN] synonymieRésumé : (auteur) Expansion of the entity attribute information of geographic knowledge graphs is essentially the fusion of the Internet’s encyclopedic knowledge. However, it lacks structured attribute information, and synonymy and polysemy always exist. These reduce the quality of the knowledge graph and cause incomplete and inaccurate semantic retrieval. Therefore, we normalize the attributes of a geographic knowledge graph based on optimal granularity clustering and co-occurrence analysis, and use structure and the semantic relation of the entity attributes to identify synonymy and correlation between attributes. Specifically: (1) We design a classification system for geographic attributes, that is, using a community discovery algorithm to classify the attribute names. The optimal clustering granularity is identified by the marker target detection algorithm. (2) We complete the fine-grained identification of attribute relations by analyzing co-occurrence relations of the attributes and rule inference. (3) Finally, the performance of the system is verified by manual discrimination using the case of “landscape, forest, field, lake and grass”. The results show the following: (1) The average precision of spatial relations was 0.974 and the average recall was 0.937; the average precision of data relations was 0.977 and the average recall was 0.998. (2) The average F1 for similarity results is 0.473; the average F1 for co-occurrence analysis results is 0.735; the average F1 for rule-based modification results is 0.934; the results show that the accuracy is greater than 90%. Compared to traditional methods only focusing on similarity, the accuracy of synonymous attribute recognition improves the system and we are capable of identifying near-sense attributes. Integration of our system and attribute normalization can greatly improve both the processing efficiency and accuracy. Numéro de notice : A2022-548 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070360 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/ijgi11070360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101149
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 360[article]GisGCN: a visual graph-based framework to match geographical areas through time / Margarita Khokhlova in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
![]()
[article]
Titre : GisGCN: a visual graph-based framework to match geographical areas through time Type de document : Article/Communication Auteurs : Margarita Khokhlova , Auteur ; Nathalie Abadie
, Auteur ; Valérie Gouet-Brunet
, Auteur ; Liming Chen, Auteur
Année de publication : 2022 Projets : Alegoria / Gouet-Brunet, Valérie Article en page(s) : n° 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attribut géomètrique
[Termes IGN] attribut sémantique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] entité géographique
[Termes IGN] image aérienne
[Termes IGN] réseau sémantiqueRésumé : (auteur) Historical visual sources are particularly useful for reconstructing the successive states of the territory in the past and for analysing its evolution. However, finding visual sources covering a given area within a large mass of archives can be very difficult if they are poorly documented. In the case of aerial photographs, most of the time, this task is carried out by solely relying on the visual content of the images. Convolutional Neural Networks are capable to capture the visual cues of the images and match them to each other given a sufficient amount of training data. However, over time and across seasons, the natural and man-made landscapes may evolve, making historical image-based retrieval a challenging task. We want to approach this cross-time aerial indexing and retrieval problem from a different novel point of view: by using geometrical and topological properties of geographic entities of the researched zone encoded as graph representations which are more robust to appearance changes than the pure image-based ones. Geographic entities in the vertical aerial images are thought of as nodes in a graph, linked to each other by edges representing their spatial relationships. To build such graphs, we propose to use instances from topographic vector databases and state-of-the-art spatial analysis methods. We demonstrate how these geospatial graphs can be successfully matched across time by means of the learned graph embedding. Numéro de notice : A2022-156 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020097 Date de publication en ligne : 29/01/2022 En ligne : https://doi.org/10.3390/ijgi11020097 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100316
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 97[article]
Titre : Deep learning-based point cloud compression Titre original : Compression de nuages de points par apprentissage profond Type de document : Thèse/HDR Auteurs : Maurice Quach, Auteur ; Frédéric Dufaux, Directeur de thèse ; Giuseppe Valenzise, Directeur de thèse Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2022 Importance : 165 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Université de Saclay, spécialité Traitement du signal et des imagesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] attribut
[Termes IGN] compression d'image
[Termes IGN] compression de données
[Termes IGN] géométrie
[Termes IGN] semis de points
[Termes IGN] stockage de donnéesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Point clouds are becoming essential in key applications with advances in capture technologies leading to large volumes of data.Compression is thus essential for storage and transmission.Point Cloud Compression can be divided into two parts: geometry and attribute compression.In addition, point cloud quality assessment is necessary in order to evaluate point cloud compression methods.Geometry compression, attribute compression and quality assessment form the three main parts of this dissertation.The common challenge across these three problems is the sparsity and irregularity of point clouds.Indeed, while other modalities such as images lie on a regular grid, point cloud geometry can be considered as a sparse binary signal over 3D space and attributes are defined on the geometry which can be both sparse and irregular.First, the state of the art for geometry and attribute compression methods with a focus on deep learning based approaches is reviewed.The challenges faced when compressing geometry and attributes are considered, with an analysis of the current approaches to address them, their limitations and the relations between deep learning and traditional ones.We present our work on geometry compression: a convolutional lossy geometry compression approach with a study on the key performance factors of such methods and a generative model for lossless geometry compression with a multiscale variant addressing its complexity issues.Then, we present a folding-based approach for attribute compression that learns a mapping from the point cloud to a 2D grid in order to reduce point cloud attribute compression to an image compression problem.Furthermore, we propose a differentiable deep perceptual quality metric that can be used to train lossy point cloud geometry compression networks while being well correlated with perceived visual quality and a convolutional neural network for point cloud quality assessment based on a patch extraction approach.Finally, we conclude the dissertation and discuss open questions in point cloud compression, existing solutions and perspectives. We highlight the link between existing point cloud compression research and research problems to relevant areas of adjacent fields, such as rendering in computer graphics, mesh compression and point cloud quality assessment. Note de contenu : 1- Introduction
2- State of the Art on point cloud compression
3- Convolutional neural networks for lossy PCGC
4- Deep generative model for lossless PCGC
5- Deep multiscale lossless PCGC
6- Folding-based PCAC
7- Deep perceptual point cloud quality metric
8- Convolutional Neural Network for PCQANuméro de notice : 24081 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de doctorat : Traitement du signal et des images : Paris-Saclay : 2022 Organisme de stage : Laboratoire des signaux et systèmes DOI : sans En ligne : https://theses.hal.science/tel-03894261 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102331 Evaluating the suitability of multi-scale terrain attribute calculation approaches for seabed mapping applications / Benjamin Misiuk in Marine geodesy, vol 44 n° 4 (July 2021)
![]()
[article]
Titre : Evaluating the suitability of multi-scale terrain attribute calculation approaches for seabed mapping applications Type de document : Article/Communication Auteurs : Benjamin Misiuk, Auteur ; Vincent Lecours, Auteur ; M.F.J. Dolan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 327 - 385 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse multiéchelle
[Termes IGN] artefact
[Termes IGN] attribut géomètrique
[Termes IGN] carte bathymétrique
[Termes IGN] cartographie hydrographique
[Termes IGN] fond marin
[Termes IGN] géomorphométrie
[Termes IGN] habitat animal
[Termes IGN] pente
[Termes IGN] réalité de terrain
[Termes IGN] rugosité
[Termes IGN] sondeur multifaisceaux
[Termes IGN] Terre-Neuve, île de (Terre-Neuve-et-Labrador)Résumé : (auteur) The scale dependence of benthic terrain attributes is well-accepted, and multi-scale methods are increasingly applied for benthic habitat mapping. There are, however, multiple ways to calculate terrain attributes at multiple scales, and the suitability of these approaches depends on the purpose of the analysis and data characteristics. There are currently few guidelines establishing the appropriateness of multi-scale raster calculation approaches for specific benthic habitat mapping applications. First, we identify three common purposes for calculating terrain attributes at multiple scales for benthic habitat mapping: (i) characterizing scale-specific terrain features, (ii) reducing data artefacts and errors, and (iii) reducing the mischaracterization of ground-truth data due to inaccurate sample positioning. We then define criteria that calculation approaches should fulfill to address these purposes. At two study sites, five raster terrain attributes, including measures of orientation, relative position, terrain variability, slope, and rugosity were calculated at multiple scales using four approaches to compare the suitability of the approaches for these three purposes. Results suggested that specific calculation approaches were better suited to certain tasks. A transferable parameter, termed the ‘analysis distance’, was necessary to compare attributes calculated using different approaches, and we emphasize the utility of such a parameter for facilitating the generalized comparison of terrain attributes across methods, sites, and scales. Numéro de notice : A2021-526 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/01490419.2021.1925789 Date de publication en ligne : 04/06/2021 En ligne : https://doi.org/10.1080/01490419.2021.1925789 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97967
in Marine geodesy > vol 44 n° 4 (July 2021) . - pp 327 - 385[article]Automating and utilising equal-distribution data classification / Gennady Andrienko in International journal of cartography, vol 7 n° 1 (March 2021)
PermalinkConvex hull: another perspective about model predictions and map derivatives from remote sensing data / Jean-Pierre Renaud (2021)
PermalinkPerception de scène par un système multi-capteurs, application à la navigation dans des environnements d'intérieur structuré / Marwa Chakroun (2021)
PermalinkUsing geometric and semantic attributes for semi-automated tag identification in OpenStreetMap data / Müslüm Hacar (2021)
PermalinkVisualization of 3D property data and assessment of the impact of rendering attributes / Stefan Seipel in Journal of Geovisualization and Spatial Analysis, vol 4 n° 2 (December 2020)
PermalinkMapping uncertain geographical attributes: incorporating robustness into choropleth classification design / Wangshu Mu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
PermalinkBertin’s forgotten typographic variables and new typographic visualization / Richard Brath in Cartography and Geographic Information Science, vol 46 n° 2 (March 2019)
PermalinkAttribute trajectory analysis : a framework to analyse attribute changes using trajectory analysis techniques / Long Zhang in International journal of geographical information science IJGIS, vol 32 n° 5-6 (May - June 2018)
PermalinkClassification of aerial photogrammetric 3D point clouds / Carlos Becker in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 5 (mai 2018)
PermalinkHarmonic regression of Landsat time series for modeling attributes from national forest inventory data / Barry T. Wilson in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
Permalink