Descripteur
Documents disponibles dans cette catégorie (45)



Etendre la recherche sur niveau(x) vers le bas
Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)
![]()
[article]
Titre : Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data Type de document : Article/Communication Auteurs : Cheng-Chun Lee, Auteur ; Nasir G. Gharaibeh, Auteur Année de publication : 2022 Article en page(s) : n° 101755 Note générale : bibliogrphie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] drainage
[Termes IGN] écoulement des eaux
[Termes IGN] Houston (Texas)
[Termes IGN] inondation
[Termes IGN] lidar mobile
[Termes IGN] modèle numérique de surface
[Termes IGN] ruissellement
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Surface drainage at the neighborhood and street scales plays an important role in conveying stormwater and mitigating urban flooding. Surface drainage at the local scale is often ignored due to the lack of up-to-date fine-scale topographical information. This paper addresses this issue by providing a novel method for evaluating surface drainage at the neighborhood and street scales based on mobile lidar (light detection and ranging) measurements. The developed method derives topographical properties and runoff accumulation by applying a semantic segmentation (SS) model (a computer vision technique) and a flow direction model (a hydrology technique) to lidar data. Fifty lidar images representing 50 street blocks were used to train, validate, and test the SS model. Based on the test dataset, the SS model has 80.3% IoU and 88.5% accuracy. The results suggest that the proposed method can effectively evaluate surface drainage conditions at both the neighborhood and street scales and identify problematic low points that could be susceptible to water ponding. Municipalities and property owners can use this information to take targeted corrective maintenance actions. Numéro de notice : A2022-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101755 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101755 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99661
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101755[article]Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event / Victoria Graffigna in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event Type de document : Article/Communication Auteurs : Victoria Graffigna, Auteur ; Manuel Hernández-Pajares, Auteur ; Francisco Azpilicueta, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 888 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données météorologiques
[Termes IGN] gradient de troposphère
[Termes IGN] phénomène climatique extrême
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GNSS
[Termes IGN] surveillance météorologique
[Termes IGN] tempête
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] vapeur d'eauRésumé : (auteur) GNSS meteorology is today one of the most growing technologies to monitor severe weather events. In this paper, we present the usage of 160 GPS reference stations over the period of 14 days to monitor and track Hurricane Harvey, which struck Texas in August 2017. We estimate the Zenith Wet Delay (ZWD) and the tropospheric gradients with 30 s interval using TOMION v2 software and carry out the processing in Precise Point Positioning (PPP) mode. We study the relationship of these parameters with atmospheric variables extracted from Tropical Rainfall Measuring Mission (TRMM) satellite mission and climate reanalysis model ERA5. This research finds that the ZWD shows patterns related to the rainfall rate and to the location of the hurricane. We also find that the tropospheric gradients are correlated with water vapor gradients before and after the hurricane, and with the wind and the pressure gradients only after the hurricane. This study also shows a new finding regarding the spectral distribution of the gradients, with a clear diurnal period present, which is also found on the ZWD itself. This kind of study approaches the GNSS meteorology to the increasing requirements of meteorologist in terms of monitoring severe weather events. Numéro de notice : A2022-166 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040888 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.3390/rs14040888 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99791
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 888[article]Modeling land use change and forest carbon stock changes in temperate forests in the United States / Lucia Fitts in Carbon Balance and Management, vol 16 ([01/02/2021])
![]()
[article]
Titre : Modeling land use change and forest carbon stock changes in temperate forests in the United States Type de document : Article/Communication Auteurs : Lucia Fitts, Auteur ; Matthew B. Russell, Auteur ; Grant M. Domke, Auteur ; Joseph F. Knight, Auteur Année de publication : 2021 Article en page(s) : n° 20 (2021) Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] forêt tempérée
[Termes IGN] Géorgie (Etats-Unis)
[Termes IGN] impact sur l'environnement
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] puits de carbone
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] Wisconsin (Etats-Unis)
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Background : Forests provide the largest terrestrial sink of carbon (C). However, these C stocks are threatened by forest land conversion. Land use change has global impacts and is a critical component when studying C fluxes, but it is not always fully considered in C accounting despite being a major contributor to emissions. An urgent need exists among decision-makers to identify the likelihood of forest conversion to other land uses and factors affecting C loss. To help address this issue, we conducted our research in California, Colorado, Georgia, New York, Texas, and Wisconsin. The objectives were to (1) model the probability of forest conversion and C stocks dynamics using USDA Forest Service Forest Inventory and Analysis (FIA) data and (2) create wall-to-wall maps showing estimates of the risk of areas to convert from forest to non-forest. We used two modeling approaches: a machine learning algorithm (random forest) and generalized mixed-effects models. Explanatory variables for the models included ecological attributes, topography, census data, forest disturbances, and forest conditions. Model predictions and Landsat spectral information were used to produce wall-to-wall probability maps of forest change using Google Earth Engine.
Results : During the study period (2000–2017), 3.4% of the analyzed FIA plots transitioned from forest to mixed or non-forested conditions. Results indicate that the change in land use from forests is more likely with increasing human population and housing growth rates. Furthermore, non-public forests showed a higher probability of forest change compared to public forests. Areas closer to cities and coastal areas showed a higher risk of transition to non-forests. Out of the six states analyzed, Colorado had the highest risk of conversion and the largest amount of aboveground C lost. Natural forest disturbances were not a major predictor of land use change.
Conclusions : Land use change is accelerating globally, causing a large increase in C emissions. Our results will help policy-makers prioritize forest management activities and land use planning by providing a quantitative framework that can enhance forest health and productivity. This work will also inform climate change mitigation strategies by understanding the role that land use change plays in C emissions.Numéro de notice : A2021-501 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article Date de publication en ligne : 03/07/2021 En ligne : https://doi.org/10.1186/s13021-021-00183-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98099
in Carbon Balance and Management > vol 16 [01/02/2021] . - n° 20 (2021)[article]Classification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Classification of hyperspectral and LiDAR data using coupled CNNs Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Zhu Li, Auteur ; Pedram Ghamisi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4939 - 4950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] Houston (Texas)
[Termes IGN] image hyperspectrale
[Termes IGN] occupation du sol
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] semis de points
[Termes IGN] Trente
[Termes IGN] utilisation du solRésumé : (auteur) In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral–spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model. Numéro de notice : A2020-391 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2969024 Date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2969024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95374
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4939 - 4950[article]Placial analysis of events: a case study on criminological places / Sunghwan Cho in Cartography and Geographic Information Science, Vol 46 n° 6 (November 2019)
![]()
[article]
Titre : Placial analysis of events: a case study on criminological places Type de document : Article/Communication Auteurs : Sunghwan Cho, Auteur ; May Yuan, Auteur Année de publication : 2019 Article en page(s) : pp 547-566 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cartographie statistique
[Termes IGN] criminalité
[Termes IGN] Dallas (Texas)
[Termes IGN] détection d'événement
[Termes IGN] données spatiotemporelles
[Termes IGN] géolocalisation
[Termes IGN] interaction humain-espace
[Termes IGN] système d'information géographique
[Termes IGN] zone à risqueRésumé : (auteur) The contrast of space and place has long been an active topic of scholarly discussions in many disciplines. While spatial analysis enjoys a multitude of quantitative methods, the study of place remains mostly conceptual and descriptive. This paper expands upon the rich concepts of place in the literature to propose a quantitative framework for placial analysis based on events. Central to the proposed framework are three assumptions: (1) human experiences transform space to place; (2) events build human experiences in space; and (3) places emerge organically and may change characters, spatial extent and location over time through the shifts in occurrences and types of events in space and time. The proposed framework consists of three elements: clustering events, decomposing event distributions, and identifying the similarity of event clusters. We applied the framework to identify criminological places in the City of Dallas in the United States and the changes of these places from 1 June 2014 to 30 May 2018. Numéro de notice : A2019-417 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1578265 Date de publication en ligne : 01/03/2019 En ligne : https://doi.org/10.1080/15230406.2019.1578265 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93544
in Cartography and Geographic Information Science > Vol 46 n° 6 (November 2019) . - pp 547-566[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019061 SL Revue Centre de documentation Revues en salle Disponible Interpreting effects of multiple, large-scale disturbances using national forest inventory data: A case study of standing dead trees in east Texas, USA / Christopher B. Edgar in Forest ecology and management, vol 437 (1 April 2019)
PermalinkIntegrating urban and national forest inventory data in support of rural–urban assessments / James A. Westfall in Forestry, an international journal of forest research, vol 91 n° 5 (December 2018)
PermalinkSpatial mining of migration patterns from web demographics / T. Edwin Chow in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)
PermalinkA spatial analysis of non‐English Twitter activity in Houston, TX / Matthew Haffner in Transactions in GIS, vol 22 n° 4 (August 2018)
PermalinkA posteriori bias correction of three models used for environmental reporting / Bogdan M. Strimbu in Forestry, an international journal of forest research, vol 91 n° 1 (January 2018)
PermalinkFusion of hyperspectral and LiDAR data using sparse and low-rank component analysis / Behnood Rasti in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
PermalinkOn the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation / Tao Jian in Journal of geodesy, vol 90 n° 12 (December 2016)
PermalinkBumps and bruises in the digital skins of cities: unevenly distributed user-generated content across US urban areas / Colin Robertson in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
PermalinkSpatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis / Marco Helbich in Cartography and Geographic Information Science, Vol 42 n° 2 (April 2015)
PermalinkCharacterization of neighborhood sensitivity of an irregular cellular automata model of urban growth / Khila R. Dahal in International journal of geographical information science IJGIS, vol 29 n° 3 (March 2015)
Permalink