Descripteur
Termes IGN > géomatique > base de données localisées > généralisation automatique de données > généralisation cartographique automatisée
généralisation cartographique automatiséeVoir aussi |
Documents disponibles dans cette catégorie (444)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Aggregating land-use polygons considering line features as separating map elements / Sven Gedicke in Cartography and Geographic Information Science, vol 48 n° 2 (March 2021)
[article]
Titre : Aggregating land-use polygons considering line features as separating map elements Type de document : Article/Communication Auteurs : Sven Gedicke, Auteur ; Johannes Oehrlein, Auteur ; Jan‐Henrik Haunert, Auteur Année de publication : 2021 Article en page(s) : pp 124 - 139 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] agrégation spatiale
[Termes IGN] algorithme du recuit simulé
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] méthode heuristique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau routier
[Termes IGN] utilisation du sol
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map generalization is the process of deriving small-scale target maps from a large-scale source map or database while preserving valuable information. In this paper we focus on topographic data, in particular areas of different land-use classes and line features representing the road network. When reducing the map scale, some areas need to be merged to larger composite regions. This process is known as area aggregation. Given a planar partition of areas, one usually aims to build geometrically compact regions of sufficient size while keeping class changes small. Since line features (e.g. roads) are perceived as separating elements in a map, we suggest integrating them into the process of area aggregation. Our aim is that boundaries of regions coincide with line features in such a way that strokes (i.e. chains of line features with small angles of deflection) are not broken into short sections. Complementing the criteria of compact regions and preserving land-use information, we consider this aim as a third criterion. Regarding all three criteria, we formalize an optimization problem and solve it with a heuristic approach using simulated annealing. Our evaluation is based on experiments with different parameter settings. In particular, we compare results of a baseline method that considers two criteria, namely compactness and class changes, with results of our new method that additionally considers our stroke-based criterion. Our results show that this third criterion can be substantially improved while keeping the quality with respect to the original two criteria on a similar level. Numéro de notice : A2021-180 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1851613 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1080/15230406.2020.1851613 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97067
in Cartography and Geographic Information Science > vol 48 n° 2 (March 2021) . - pp 124 - 139[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021021 RAB Revue Centre de documentation En réserve L003 Disponible Generative adversarial networks to generalise urban areas in topographic maps / Azelle Courtial (2021)
Titre : Generative adversarial networks to generalise urban areas in topographic maps Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B4-2021 Projets : 1-Pas de projet / Conférence : ISPRS 2021, Commission 4, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 4 Importance : pp 15 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] carte topographique
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This article presents how a generative adversarial network (GAN) can be employed to produce a generalised map that combines several cartographic themes in the dense context of urban areas. We use as input detailed buildings, roads, and rivers from topographic datasets produced by the French national mapping agency (IGN), and we expect as output of the GAN a legible map of these elements at a target scale of 1:50,000. This level of detail requires to reduce the amount of information while preserving patterns; covering dense inner cities block by a unique polygon is also necessary because these blocks cannot be represented with enlarged individual buildings. The target map has a style similar to the topographic map produced by IGN. This experiment succeeded in producing image tiles that look like legible maps. It also highlights the impact of data and representation choices on the quality of predicted images, and the challenge of learning geographic relationships. Numéro de notice : C2021-016 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B4-2021-15-2021 Date de publication en ligne : 30/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-15-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98062 Cartographic generalization / Monika Sester in Journal of Spatial Information Science, JoSIS, n° 21 (2020)
[article]
Titre : Cartographic generalization Type de document : Article/Communication Auteurs : Monika Sester, Auteur Année de publication : 2020 Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] géomètrie algorithmique
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This short paper gives a subjective view on cartographic generalization, its achievements in the past, and the challenges it faces in the future. Numéro de notice : A2020-849 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.5311/JOSIS.2020.21.716 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.5311/JOSIS.2020.21.716 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98662
in Journal of Spatial Information Science, JoSIS > n° 21 (2020)[article]A multi-scale representation model of polyline based on head/tail breaks / Pengcheng Liu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
[article]
Titre : A multi-scale representation model of polyline based on head/tail breaks Type de document : Article/Communication Auteurs : Pengcheng Liu, Auteur ; Tianyuan Xiao, Auteur ; Jia Xiao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2275 - 2295 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] analyse de groupement
[Termes IGN] entropie de Shannon
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] représentation multiple
[Termes IGN] série de Fourier
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This paper proposes a model to quantify the multiscale representation of a polyline based on iterative head/tail breaks. A polyline is first transformed into a corresponding Fourier descriptor consisting of normalized Fourier-series-expansion coefficients. Then, the most significant finite components of the Fourier descriptor are selected and ranked to constitute the polyline constrained Fourier descriptor. Using Shannon’s information theory, information content of the constrained Fourier-descriptor components is defined. Next, head/tail breaks are introduced to iteratively divide the constrained Fourier descriptor into head and tail components according to the heavy-tailed distribution of information contents. Thus, simplified polylines are reconstructed using ordered heads generated from head/tail breaks. Finally, the radical law is introduced and applied to model multiscale polyline representation by quantifying the scale of each simplified polyline. Three experiments are designed and conducted to evaluate the proposed model. The results demonstrate that the proposed model is valid and efficient for quantifying multiscale polyline representation. Numéro de notice : A2020-615 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1753203 Date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1080/13658816.2020.1753203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95988
in International journal of geographical information science IJGIS > vol 34 n° 11 (November 2020) . - pp 2275 - 2295[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020111 RAB Revue Centre de documentation En réserve L003 Disponible Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
[article]
Titre : Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data Type de document : Article/Communication Auteurs : Yaotong Cai, Auteur ; Xinyu Li, Auteur ; Meng Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 102164 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] algorithme de généralisation
[Termes IGN] analyse d'image orientée objet
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prairie
[Termes IGN] rétrodiffusion
[Termes IGN] série temporelle
[Termes IGN] zone humideRésumé : (auteur) Wetland ecosystems have experienced dramatic challenges in the past few decades due to natural and human factors. Wetland maps are essential for the conservation and management of terrestrial ecosystems. This study is to obtain an accurate wetland map using an object-based stacked generalization (Stacking) method on the basis of multi-temporal Sentinel-1 and Sentinel-2 data. Firstly, the Robust Adaptive Spatial Temporal Fusion Model (RASTFM) is used to get time series Sentinel-2 NDVI, from which the vegetation phenology variables are derived by the threshold method. Subsequently, both vertical transmit-vertical receive (VV) and vertical transmit-horizontal receive (VH) polarization backscatters (σ0 VV, σ0 VH) are obtained using the time series Sentinel-1 images. Speckle noise inherent in SAR data, resulting in over-segmentation or under-segmentation, can affect image segmentation and degrade the accuracies of wetland classification. Therefore, we segment Sentinel-2 multispectral images to delineate meaningful objects in this study. Then, in order to reduce data redundancy and computation time, we analyze the optimal feature combination using the Sentinel-2 multispectral images, Sentinel-2 NDVI time series, phenological variables and other vegetation index derived from Sentinel-2 multispectral images, as well as time series Sentinel-1 backscatters at the object level. Finally, the stacked generalization algorithm is utilized to extract the wetland information based on the optimal feature combination in the Dongting Lake wetland. The overall accuracy and Kappa coefficient of the object-based stacked generalization method are 92.46% and 0.92, which are 3.88% and 0.04 higher than that using the pixel-based method. Moreover, the object-based stacked generalization algorithm is superior to single classifiers in classifying vegetation of high heterogeneity areas. Numéro de notice : A2020-748 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102164 Date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102164 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96398
in International journal of applied Earth observation and geoinformation > vol 92 (October 2020) . - n° 102164[article]Mapping the French green infrastructure – an exercise in homogenizing heterogeneous regional data / Lucille Billon in International journal of cartography, Vol 6 n° 2 (July 2020)PermalinkImproved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)PermalinkMethodology of the automatic generalization of buildings, road networks, forests and surface waters: a case study based on the Topographic Objects Database in Poland / Izabela Karsznia in Geocarto international, vol 35 n° 7 ([15/05/2020])PermalinkGeological map generalization driven by size constraints / Azimjon Sayidov in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)PermalinkClassifying physiographic regimes on terrain and hydrologic factors for adaptive generalization of stream networks / Lauwrence V. Stanislawski in International journal of cartography, Vol 6 n° 1 (March 2020)PermalinkConstraint based evaluation of generalized images generated by deep learning / Azelle Courtial (2020)PermalinkIs deep learning the new agent for map generalization? / Guillaume Touya in International journal of cartography, vol 5 n° 2-3 (July - November 2019)PermalinkAutomatic derivation of on-demand tactile maps for visually impaired people: first experiments and research agenda / Guillaume Touya in International journal of cartography, vol 5 n° 1 (March 2019)PermalinkPermalinkPermalink