Descripteur
Termes IGN > informatique > traitement automatique de données
traitement automatique de donnéesSynonyme(s)traitement automatique de l'infomationVoir aussi |
Documents disponibles dans cette catégorie (512)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Computational improvements to multi-scale geographically weighted regression / Ziqi Li in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
[article]
Titre : Computational improvements to multi-scale geographically weighted regression Type de document : Article/Communication Auteurs : Ziqi Li, Auteur ; A. Stewart Fotheringham, Auteur Année de publication : 2020 Article en page(s) : pp 1378 - 1397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse géovisuelle
[Termes IGN] analyse multiéchelle
[Termes IGN] implémentation (informatique)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression géographiquement pondérée
[Termes IGN] traitement parallèleRésumé : (auteur) Geographically Weighted Regression (GWR) has been broadly used in various fields to model spatially non-stationary relationships. Multi-scale Geographically Weighted Regression (MGWR) is a recent advancement to the classic GWR model. MGWR is superior in capturing multi-scale processes over the traditional single-scale GWR model by using different bandwidths for each covariate. However, the multiscale property of MGWR brings additional computation costs. The calibration process of MGWR involves iterative back-fitting under the additive model (AM) framework. Currently, MGWR can only be applied on small datasets within a tolerable time and is prohibitively time-consuming to run with moderately large datasets (greater than 5,000 observations). In this paper, we propose a parallel implementation that has crucial computational improvements to the MGWR calibration. This improved computational method reduces both memory footprint and runtime to allow MGWR modelling to be applied to moderate-to-large datasets (up to 100,000 observations). These improvements are integrated into the mgwr python package and the MGWR 2.0 software, both of which are freely available to download. Numéro de notice : A2020-305 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1720692 Date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1720692 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95147
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1378 - 1397[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 RAB Revue Centre de documentation En réserve L003 Disponible An integrated approach to registration and fusion of hyperspectral and multispectral images / Yuan Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : An integrated approach to registration and fusion of hyperspectral and multispectral images Type de document : Article/Communication Auteurs : Yuan Zhou, Auteur ; Anand Rangarajan, Auteur ; Paul D. Gader, Auteur Année de publication : 2020 Article en page(s) : pp 3020 - 3033 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme de fusion
[Termes IGN] distorsion d'image
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] méthode des moindres carrés
[Termes IGN] points registration
[Termes IGN] tâche image d'un pointRésumé : (auteur) Combining a hyperspectral (HS) image and a multispectral (MS) image—an example of image fusion—can result in a spatially and spectrally high-resolution image. Despite the plethora of fusion algorithms in remote sensing, a necessary prerequisite, namely registration, is mostly ignored. This limits their application to well-registered images from the same source. In this article, we propose and validate an integrated registration and fusion approach (code available at https://github.com/zhouyuanzxcv/Hyperspectral ). The registration algorithm minimizes a least-squares (LSQ) objective function with the point spread function (PSF) incorporated together with a nonrigid freeform transformation applied to the HS image and a rigid transformation applied to the MS image. It can handle images with significant scale differences and spatial distortion. The fusion algorithm takes the full high-resolution HS image as an unknown in the objective function. Assuming that the pixels lie on a low-dimensional manifold invariant to local linear transformations from spectral degradation, the fusion optimization problem leads to a closed-form solution. The method was validated on the Pavia University, Salton Sea, and the Mississippi Gulfport datasets. When the proposed registration algorithm is compared to its rigid variant and two mutual information-based methods, it has the best accuracy for both the nonrigid simulated dataset and the real dataset, with an average error less than 0.15 pixels for nonrigid distortion of maximum 1 HS pixel. When the fusion algorithm is compared with current state-of-the-art algorithms, it has the best performance on images with registration errors as well as on simulations that do not consider registration effects. Numéro de notice : A2020-231 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2941494 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2941494 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94969
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3020 - 3033[article]Delineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado / Jin Wang in Survey review, vol 52 n° 372 (May 2020)
[article]
Titre : Delineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado Type de document : Article/Communication Auteurs : Jin Wang, Auteur ; Duo Wang, Auteur ; Shengqi Liu, Auteur ; Boyu Jia, Auteur Année de publication : 2020 Article en page(s) : pp 215 - 223 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] analyse comparative
[Termes IGN] arbre (flore)
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] effondrement de terrain
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) Multi-temporal high-density terrestrial laser scanning (TLS) datasets are processed to delineating possible movements from terrain surfaces and trees. Terrain surface movements are estimated with the help of segmentation and random sample consensus (RANSAC) algorithm. Tree movements are interpreted by iterative closest point (ICP) solved translations and rotations of tree point clouds. The capabilities of the proposed methodology were tested using a case study of the Slumgullion landslide, where the trees without clear trunks cover the terrain surfaces. The displacements from the terrain surfaces and trees are similar with the results observed using our global positioning system (GPS) and historic results. Numéro de notice : A2020-177 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1558580 Date de publication en ligne : 25/12/2018 En ligne : https://doi.org/10.1080/00396265.2018.1558580 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94835
in Survey review > vol 52 n° 372 (May 2020) . - pp 215 - 223[article]Saliency-guided single shot multibox detector for target detection in SAR images / Lan Du in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Saliency-guided single shot multibox detector for target detection in SAR images Type de document : Article/Communication Auteurs : Lan Du, Auteur ; Lu Li, Auteur ; Di Wei, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3366 - 3376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de cible
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] saillanceRésumé : (auteur) The single shot multibox detector (SSD), a proposal-free method based on convolutional neural network (CNN), has recently been proposed for target detection and has found applications in synthetic aperture radar (SAR) images. Moreover, the saliency information reflected in the saliency map can highlight the target of interest while suppressing clutter, which is beneficial for better scene understanding. Therefore, in this article, we propose a saliency-guided SSD (S-SSD) for target detection in SAR images, in which we effectively integrate the saliency into the SSD network not only to suggest where to focus on but also to improve the representation capability in complex scenes. The proposed S-SSD contains two separated convolutional backbone subnetwork architectures, one with the original SAR image as input to extract features, and the other with the corresponding saliency map obtained from the modified Itti’s method as input to acquire refined saliency information under supervision. In addition, the dense connection structure, instead of the plain structure used in original SSD, is applied in the two convolutional backbone architectures to utilize multiscale information with fewer parameters. Then, for integrating saliency information to guide the network to emphasize informative regions, multilevel fusion modules are utilized to merge the two streams into a unified framework, thereby making the whole network end-to-end jointly trained. Finally, the convolutional predictors are used to predict targets. The experimental results on the miniSAR real data demonstrate that the proposed S-SSD can achieve better detection performance than state-of-the-art methods. Numéro de notice : A2020-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2953936 Date de publication en ligne : 11/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2953936 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94983
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3366 - 3376[article]Adaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation / Deliang Xiang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
[article]
Titre : Adaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation Type de document : Article/Communication Auteurs : Deliang Xiang, Auteur ; Wei Wang, Auteur ; Tao Tang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2412 - 2429 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] chatoiement
[Termes IGN] contour
[Termes IGN] fusion de données
[Termes IGN] image radar
[Termes IGN] polarimétrie radar
[Termes IGN] radar à antenne synthétique
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] vision par ordinateurRésumé : (auteur) This article proposes an efficient and adaptive statistical superpixel merging approach with edge penalty for polarimetric synthetic aperture radar (PolSAR) image segmentation. Based on the initial superpixel over-segmentation result obtained by our previously proposed adaptive polarimetric superpixel generation algorithm (Pol-ASLIC), this work achieves efficient and accurate PolSAR image segmentation by merging superpixels using the statistical region merging (SRM) framework. This article proposes to define a new dissimilarity measure between superpixels, which takes the edge penalty into consideration, leading to a reasonable and accurate merging order for superpixel pairs. With regard to the merging predicate of superpixels, a polarimetric homogeneity measurement (HoM) is used to define the merging threshold, making the merging predicate and merging threshold adaptive to the PolSAR image content. Experimental results on three airborne and one spaceborne PolSAR data sets demonstrate that the proposed approach can effectively improve the computation efficiency and segmentation accuracy in comparison with state-of-the-art merging-based methods for PolSAR data. More importantly, the proposed approach is free of parameters and easy to use. Numéro de notice : A2020-196 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2949066 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2949066 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94864
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2412 - 2429[article]Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)PermalinkClassifying physiographic regimes on terrain and hydrologic factors for adaptive generalization of stream networks / Lauwrence V. Stanislawski in International journal of cartography, Vol 6 n° 1 (March 2020)PermalinkA LiDAR–optical data fusion approach for identifying and measuring small stream impoundments and dams / Benjamin Swan in Transactions in GIS, Vol 24 n° 1 (February 2020)PermalinkCartographie sémantique hybride de scènes urbaines à partir de données image et Lidar / Mohamed Boussaha (2020)PermalinkPermalinkFusion of 3D point clouds and hyperspectral data for the extraction of geometric and radiometric features of trees / Eduardo Alejandro Tusa Jumbo (2020)PermalinkDe l’image optique "multi-stéréo" à la topographie très haute résolution et la cartographie automatique des failles par apprentissage profond / Lionel Matteo (2020)PermalinkMoving objects aware sensor mesh fusion for indoor reconstruction from a couple of 2D lidar scans / Teng Wu (2020)PermalinkPermalinkOn the adjustment, calibration and orientation of drone photogrammetry and laser-scanning / Emmanuel Clédat (2020)Permalink