Descripteur
Documents disponibles dans cette catégorie (95)



Etendre la recherche sur niveau(x) vers le bas
The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
![]()
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
![]()
[article]
Titre : Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve Type de document : Article/Communication Auteurs : Michael Lechner, Auteur ; Alena Dostalova, Auteur ; Markus Hollaus, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2687 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] Autriche
[Termes IGN] biosphère
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] espèce végétale
[Termes IGN] feuillu
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] Pinophyta
[Termes IGN] rapport signal sur bruit
[Termes IGN] réserve forestièreRésumé : (auteur) Microwave and optical imaging methods react differently to different land surface parameters and, thus, provide highly complementary information. However, the contribution of individual features from these two domains of the electromagnetic spectrum for tree species classification is still unclear. For large-scale forest assessments, it is moreover important to better understand the domain-specific limitations of the two sensor families, such as the impact of cloudiness and low signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of 83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1 including phenological indicators and additional features derived from the time series did not yield satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated. Numéro de notice : A2022-540 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14112687 Date de publication en ligne : 03/06/2022 En ligne : https://doi.org/10.3390/rs14112687 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101103
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2687[article]Virtual laser scanning of dynamic scenes created from real 4D topographic point cloud data / Lukas Winiwarter in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Virtual laser scanning of dynamic scenes created from real 4D topographic point cloud data Type de document : Article/Communication Auteurs : Lukas Winiwarter, Auteur ; Katharina Anders, Auteur ; Daniel Schröder, Auteur ; Bernhard Höfle, Auteur Année de publication : 2022 Article en page(s) : pp 79 - 86 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtre de Kalman
[Termes IGN] modèle de simulation
[Termes IGN] scène 3D
[Termes IGN] scène virtuelle
[Termes IGN] semis de points
[Termes IGN] Tyrol (Autriche)Résumé : (autuer) Virtual laser scanning (VLS) allows the generation of realistic point cloud data at a fraction of the costs required for real acquisitions. It also allows carrying out experiments that would not be feasible or even impossible in the real world, e.g., due to time constraints or when hardware does not exist. A critical part of a simulation is an adequate substitution of reality. In the case of VLS, this concerns the scanner, the laser-object interaction, and the scene. In this contribution, we present a method to recreate a realistic dynamic scene, where the surface changes over time. We first apply change detection and quantification on a real dataset of an erosion-affected high-mountain slope in Tyrol, Austria, acquired with permanent terrestrial laser scanning (TLS). Then, we model and extract the time series of a single change form, and transfer it to a virtual model scene. The benefit of such a transfer is that no physical modelling of the change processes is required. In our example, we use a Kalman filter with subsequent clustering to extract a set of erosion rills from a time series of high-resolution TLS data. The change magnitudes quantified at the locations of these rills are then transferred to a triangular mesh, representing the virtual scene. Subsequently, we apply VLS to investigate the detectability of such erosion rills from airborne laser scanning at multiple subsequent points in time. This enables us to test if, e.g., a certain flying altitude is appropriate in a disaster response setting for the detection of areas exposed to immediate danger. To ensure a successful transfer, the spatial resolution and the accuracy of the input dataset are much higher than the accuracy and resolution that are being simulated. Furthermore, the investigated change form is detected as significant in the input data. We, therefore, conclude the model of the dynamic scene derived from real TLS data to be an appropriate substitution for reality. Numéro de notice : A2022-437 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-79-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100746
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 79 - 86[article]Unexpected negative effect of available water capacity detected on recent conifer forest growth trends across wide environmental gradients / Clémentine Ols in Ecosystems, vol 25 n° 2 (March 2022)
![]()
[article]
Titre : Unexpected negative effect of available water capacity detected on recent conifer forest growth trends across wide environmental gradients Type de document : Article/Communication Auteurs : Clémentine Ols , Auteur ; Thomas Gschwantner, Auteur ; Klemens Schadauer, Auteur ; Jean-Daniel Bontemps
, Auteur
Année de publication : 2022 Projets : ARBRE / AgroParisTech (2007 -), LUE / Université de Lorraine Article en page(s) : pp 404 - 421 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] analyse diachronique
[Termes IGN] Autriche
[Termes IGN] cerne
[Termes IGN] changement climatique
[Termes IGN] croissance des arbres
[Termes IGN] gradient d'altitude
[Termes IGN] hétérogénéité environnementale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] Larix decidua
[Termes IGN] modèle de croissance végétale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] ressources en eau
[Termes IGN] structure d'un peuplement forestier
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) National Forest Inventories (NFIs) perform systematic forest surveys across space and time. They are hence powerful tools to understand climate controls on forest growth at wide geographical scales and account for the effects of local abiotic and biotic interactions. To investigate the effects of climate change upon growth dynamics of four major European conifer species along elevation and continentality gradients, we herein provide an original harmonization of the French and Austrian NFI datasets. The growth of Norway spruce, Scots pine, silver fir and European larch over the 1996–2016 period was studied in pure and even-aged plots across different ecological regions. We derived climate-driven growth trends from > 65, 000 radial increment series filtered out from major biotic and abiotic influences using statistical modeling. We further identified primary environmental drivers of conifer growth by regressing growth trends against regionally aggregated biotic and abiotic forest attributes. Negative growth trends were observed in continental regions undergoing the most rapid warming and thermal amplitude contraction over the study period. Negative trends were also associated with lower forest structural heterogeneity and, surprisingly, with greater available water capacity. Remarkably, we observed these associations both at the inter- and intra-species levels, suggesting the universality of these primary growth determinants. Our study shows that harmonized NFI data at the transnational level provide reliable information on climate–growth interactions. Here, greater forest structural complexity and greater water resource limitation were highlighted as drivers of greater forest resilience to climate change at large-scale. This result forms crucial bases to implementing climate-smart forest management. Numéro de notice : A2022-023 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10021-021-00663-3 En ligne : https://doi.org/10.1007/s10021-021-00663-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98116
in Ecosystems > vol 25 n° 2 (March 2022) . - pp 404 - 421[article]A geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : A geographically weighted artificial neural network Type de document : Article/Communication Auteurs : Julian Haguenauer, Auteur ; Marco Helbich, Auteur Année de publication : 2022 Article en page(s) : pp 215 - 235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] analyse de sensibilité
[Termes IGN] Autriche
[Termes IGN] coût
[Termes IGN] évaluation foncière
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] régression géographiquement pondérée
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal artificielRésumé : (auteur) While recent developments have extended geographically weighted regression (GWR) in many directions, it is usually assumed that the relationships between the dependent and the independent variables are linear. In practice, however, it is often the case that variables are nonlinearly associated. To address this issue, we propose a geographically weighted artificial neural network (GWANN). GWANN combines geographical weighting with artificial neural networks, which are able to learn complex nonlinear relationships in a data-driven manner without assumptions. Using synthetic data with known spatial characteristics and a real-world case study, we compared GWANN with GWR. While the results for the synthetic data show that GWANN performs better than GWR when the relationships within the data are nonlinear and their spatial variance is high, the results based on the real-world data demonstrate that the performance of GWANN can also be superior in a practical setting. Numéro de notice : A2022-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1871618 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1871618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99785
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 215 - 235[article]Photogrammetric 3D mobile mapping of rail tracks / Philipp Glira in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
PermalinkEstimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (December-15 2021)
PermalinkEvaluating PPGIS usability in a multi-national field study combining qualitative surveys and eye-tracking / Mona Bartling in Cartographic journal (the), vol 58 n° 2 (May 2021)
PermalinkComprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkPopulation dynamics and natural hazard risk management: conceptual and practical linkages for the case of Austrian policy making / Christoph Clar in Natural Hazards, Vol 105 n° 2 (January 2021)
PermalinkTowards a systematic and continuous monitoring of climate change impacts on forest productivity in Europe [diaporama] / Clémentine Ols (2021)
PermalinkClimate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model / Arne Nothdurft in Forest ecology and management, vol 478 ([15/12/2020])
PermalinkEvaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria / Johannes Scholz in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkTowards an optimization of sample plot size and scanner position layout for terrestrial laser scanning in multi-scan mode / Tim Ritter in Forests, vol 11 n° 10 (October 2020)
PermalinkDeriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
Permalink