Descripteur
Documents disponibles dans cette catégorie (729)


Etendre la recherche sur niveau(x) vers le bas
An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong / Hai-Min Lyu in Sustainable Cities and Society, vol 91 (April 2023)
![]()
[article]
Titre : An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong Type de document : Article/Communication Auteurs : Hai-Min Lyu, Auteur ; Zhen-Yu Yin, Auteur Année de publication : 2023 Article en page(s) : n° 104427 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] Hong-Kong
[Termes IGN] processus de hiérarchisation analytique floue
[Termes IGN] risque naturel
[Termes IGN] système d'information géographique
[Termes IGN] zone à risqueRésumé : (auteur) Hong Kong frequently suffers from multi-hazards such as floods, muddy-water flows and landslides induced by rainstorms. This study presents an improved multi criteria decision making (MCDM) approach with integrating the interval numbers into fuzzy analytical hierarchy process (FAHP) to assess multi-hazard risks. To illustrate the efficiency of the improved MCDM method, the AHP, interval-FAHP and analytical network process (ANP) were incorporated into a geographical information system (GIS, abbreviated as AHP-GIS, interval-FAHP-GIS, and ANP-GIS) to assess the risks of multi-hazards (e.g., floods, muddy-water flows, and landslides) in Hong Kong. The assessed multi-risks indicated that the percentages of areas with a high risk of flood, muddy-water flow, and landslide were more than 15%, 17%, and 18%, respectively. The results demonstrated that MCDM methods considered multi-criteria contributions on multi hazards. Different assessment factors contributed different importance on different multi-hazard risks. The comparison indicates that interval-FAHP-GIS perform better than AHP-GIS and ANP-GIS in capturing high-risk areas. The interval-FAHP-GIS method adopts interval fuzzy numbers instead of crisp numbers in AHP-GIS to reflect the degree of importance of assessment factors, which increases the accuracy of the assessed multi-risks. Numéro de notice : A2023-150 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2023.104427 Date de publication en ligne : 27/01/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104427 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102823
in Sustainable Cities and Society > vol 91 (April 2023) . - n° 104427[article]
[article]
Titre : Peut-on prédire les séismes ? Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 21 - 21 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] catastrophe naturelle
[Termes IGN] déformation de la croute terrestre
[Termes IGN] Demeter (microsatellite)
[Termes IGN] observation de la Terre
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] station GNSS
[Termes IGN] tectonique des plaquesRésumé : (Auteur) Le 6 février, un séisme de magnitude 7,8 s’est produit à la frontière entre la Turquie et la Syrie, faisant près de 50000 victimes. Quelques minutes auraient suffi pour épargner presque toutes les vies, aussi s’interroge-t-on à chaque catastrophe : aurait-on pu la prédire ? Numéro de notice : A2023-066 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102713
in Géomètre > n° 2211 (mars 2023) . - pp 21 - 21[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023031 SL Revue Centre de documentation Revues en salle Disponible Wavelet-like denoising of GNSS data through machine learning. Application to the time series of the Campi Flegrei volcanic area (Southern Italy) / Rolando Carbonari in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
![]()
[article]
Titre : Wavelet-like denoising of GNSS data through machine learning. Application to the time series of the Campi Flegrei volcanic area (Southern Italy) Type de document : Article/Communication Auteurs : Rolando Carbonari, Auteur ; Umberto Riccardi, Auteur ; Prospero De Martino, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2187271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] caldeira
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] filtrage du bruit
[Termes IGN] Naples
[Termes IGN] relief volcanique
[Termes IGN] risque naturel
[Termes IGN] série temporelle
[Termes IGN] surveillance géologique
[Termes IGN] transformation en ondelettesRésumé : (auteur) The great potential of the Global Navigation Satellite System (GNSS) in monitoring ground deformation is widely recognized. As with other geophysical data, GNSS time series can be significantly noisy, hiding elusive ground deformation signals. Several denoising techniques have been proposed to improve the signal-to-noise ratio over the years. One of the most effective denoising techniques has been proved to be multi-resolution decomposition through the discrete wavelet transform. However, wavelet analysis requires long data sets to be effective, as well as long computation times, that hinder its use as a real or near real-time monitoring tool. We propose training by a Convolutional Neural Network (CNN) to perform the equivalent of wavelet analysis to overcome these limitations. Once trained, the CNN model provides answers within seconds, making it feasible as a real-time data analysis tool. Our Machine Learning algorithm is tested on daily GNSS time series collected in the Campi Flegrei caldera (Southern Italy), which is a highly volcanic risk area. Without significant gaps, the retrieved RMSE and R2 values vary in the ranges 0.65–0.98 and 0.06–0.52 cm, respectively. These results are encouraging, as they hint at the possibility of applying this methodology in more effective real-time monitoring solutions for active volcanoes. Numéro de notice : A2023-180 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2023.2187271 Date de publication en ligne : 10/03/2023 En ligne : https://doi.org/10.1080/19475705.2023.2187271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102949
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - n° 2187271[article]Modelling evacuation preparation time prior to floods: A machine learning approach / R. Sreejith in Sustainable Cities and Society, vol 87 (December 2022)
![]()
[article]
Titre : Modelling evacuation preparation time prior to floods: A machine learning approach Type de document : Article/Communication Auteurs : R. Sreejith, Auteur ; K.R. Sinimole, Auteur Année de publication : 2022 Article en page(s) : n° 104257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] chronométrie
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de crise
[Termes IGN] inondation
[Termes IGN] Kerala (Inde ; état)
[Termes IGN] modèle de simulation
[Termes IGN] plan de prévention des risques
[Termes IGN] questionnaire
[Termes IGN] risque naturel
[Termes IGN] secours d'urgenceRésumé : (auteur) Flooding is a significant hazard responsible for substantial damage and risks to human life worldwide. Effective emergency evacuation to a safer location remains a concern even though the crisis can be predicted and warnings were given. During a calamity, most residents cannot quickly and securely flee. As it is crucial to start evacuation at the right time to have a safe evacuation, this study focuses on a machine learning-based model for predicting a household's evacuation preparation time in the incident of a flood. The study is based on the data collected from flood-affected people from Kerala, India, through a questionnaire. The study indicates that people's demographic, geographical and behavioural aspects, awareness of natural hazards and management are the critical components for improved emergency actions. Further, the article also analysed the characteristics of the respondents and successfully created clusters in which the respondents broadly belong, which will help the rescue team operationalize the evacuation process. Numéro de notice : A2022-819 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104257 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101986
in Sustainable Cities and Society > vol 87 (December 2022) . - n° 104257[article]Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])
![]()
[article]
Titre : Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India Type de document : Article/Communication Auteurs : Rabin Chakrabortty, Auteur ; Subodh Chandra Pal, Auteur ; Fatemeh Rezaie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6713 - 6735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] mousson
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau neuronal profond
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Flood-susceptibility mapping is an important component of flood risk management to control the effects of natural hazards and prevention of injury. We used a remote-sensing and geographic information system (GIS) platform and a machine-learning model to develop a flood susceptibility map of Kangsabati River Basin, India where flash flood is common due to monsoon precipitation with short duration and high intensity. And in this subtropical region, climate change’s impact helps to influence the distribution of rainfall and temperature variation. We tested three models-particle swarm optimization (PSO), an artificial neural network (ANN), and a deep-leaning neural network (DLNN)-and prepared a final flood susceptibility map to classify flood-prone regions in the study area. Environmental, topographical, hydrological, and geological conditions were included in the models, and the final model was selected based on the relations between potentiality of causative factors and flood risk based on multi-collinearity analysis. The model results were validated and evaluated using the area under receiver operating characteristic (ROC) curve (AUC), which is an indicator of the current state of the environment and a value >0.95 implies a greater risk of flash floods. The AUC values for ANN, DLNN, and PSO for training datasets were 0.914, 0.920, and 0.942, respectively. Among these three models, PSO showed the best performance with an AUC value of 0.942. The PSO approach is applicable for flood susceptibility mapping of the eastern part of India, a subtropical region, to allow flood mitigation and help to improve risk management in this region. Numéro de notice : A2022-750 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1953618 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1953618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101742
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6713 - 6735[article]Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry / Wei Wang in Computers & geosciences, vol 166 (September 2022)
PermalinkUAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment / Katerina Trepekli in Natural Hazards, vol 113 n° 1 (August 2022)
PermalinkHow large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (June-15 2022)
PermalinkART-RISK 3.0, a fuzzy-based platform that combine GIS and expert assessments for conservation strategies in cultural heritage / M. Moreno in Journal of Cultural Heritage, vol 55 (May - June 2022)
PermalinkLandslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
PermalinkDeep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity / Marie Bouih in Earth and planetary science letters, vol 584 (15 April 2022)
PermalinkLa bathymétrie ancienne au service de l’étude de tsunamis inexpliqués : le cas du pertuis d’Antioche (1785, 1875, 1882) / Helen Mair Rawsthorne in Norois, n° 263 (avril - juin 2022)
PermalinkDetermination of building flood risk maps from LiDAR mobile mapping data / Yu Feng in Computers, Environment and Urban Systems, vol 93 (April 2022)
PermalinkFlood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)
PermalinkNatural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches / Joyce Machado Nunes Romeiro in Forest ecology and management, vol 509 (April-1 2022)
Permalink