Descripteur
Termes IGN > aménagement > sécurité routière > signalisation routière
signalisation routièreSynonyme(s)SignageVoir aussi |
Documents disponibles dans cette catégorie (61)



Etendre la recherche sur niveau(x) vers le bas
Augmented reality for scene text recognition, visualization and reading to assist visually impaired people / Imene Ouali in Procedia Computer Science, vol 207 (2022)
![]()
[article]
Titre : Augmented reality for scene text recognition, visualization and reading to assist visually impaired people Type de document : Article/Communication Auteurs : Imene Ouali, Auteur ; Mohamed Ben Halima, Auteur ; Ali Wali, Auteur Année de publication : 2022 Article en page(s) : pp 158 - 167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] enquête
[Termes IGN] personne malvoyante
[Termes IGN] réalité augmentée
[Termes IGN] reconnaissance de caractères
[Termes IGN] signalisation routière
[Termes IGN] visualisationRésumé : (auteur) Reading traffic signs while driving a car for visually impaired people and people with visual problems is a very difficult task for them. This task is encountered every day, sometimes incorrect reading of traffic signs can lead to very serious results. In particular, the Arabic language is very difficult, making recognizing and viewing Arabic text a difficult task. In this context, we are looking for an effective solution to remove errors and results that can sometimes end someone's life. This article aims to correctly read traffic signs with Arabic text using augmented reality technology. Our system is composed of three modules. The first is text detection and recognition. The second is Text visualization. The third is Text to speech methods conversion. With this system, the user can have two different results. The first result is visual with much-improved text and enhancement. The second result is sound, he can hear the text aloud. This system is very applicable and effective for daily life. To assess the effectiveness of our work, we offer a survey to a group of visually impaired people to give their opinion on the use of our application. The results have been good for most people. Numéro de notice : A2023-010 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Article DOI : 10.1016/j.procs.2022.09.048 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1016/j.procs.2022.09.048 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102119
in Procedia Computer Science > vol 207 (2022) . - pp 158 - 167[article]3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation / Heyang Thomas Li in The Visual Computer, vol 38 n° 5 (May 2022)
![]()
[article]
Titre : 3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation Type de document : Article/Communication Auteurs : Heyang Thomas Li, Auteur ; Zachary Todd, Auteur ; Nikolas Bielski, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1759 - 1774 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification orientée objet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] route
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The classification and extraction of road markings and lanes are of critical importance to infrastructure assessment, planning and road safety. We present a pipeline for the accurate segmentation and extraction of rural road surface objects in 3D lidar point-cloud, as well as a method to extract geometric parameters belonging to tar seal. To decrease the computational resources needed, the point-clouds were aggregated into a 2D image space before being transformed using affine transformations. The Mask R-CNN algorithm is then applied to the transformed image space to localize, segment and classify the road objects. The segmentation results for road surfaces and markings can then be used for geometric parameter estimation such as road widths estimation, while the segmentation results show that the efficacy of the existing Mask R-CNN to segment needle-type objects is improved by our proposed transformations. Numéro de notice : A2022-376 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02103-8 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02103-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100627
in The Visual Computer > vol 38 n° 5 (May 2022) . - pp 1759 - 1774[article]A graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : A graph attention network for road marking classification from mobile LiDAR point clouds Type de document : Article/Communication Auteurs : Lina Fang, Auteur ; Tongtong Sun, Auteur ; Shuang Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] noeud
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines. Numéro de notice : A2022-234 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.jag.2022.102735 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102735 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100124
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102735[article]Traffic sign three-dimensional reconstruction based on point clouds and panoramic images / Minye Wang in Photogrammetric record, vol 37 n° 177 (March 2022)
![]()
[article]
Titre : Traffic sign three-dimensional reconstruction based on point clouds and panoramic images Type de document : Article/Communication Auteurs : Minye Wang, Auteur ; Rufei Liu, Auteur ; Jiben Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 87 - 110 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] lidar mobile
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) Traffic signs are a very important source of information for drivers and pilotless automobiles. With the advance of Mobile LiDAR System (MLS), massive point clouds have been applied in three-dimensional digital city modelling. However, traffic signs in MLS point clouds are low density, colourless and incomplete. This paper presents a new method for the reconstruction of vertical rectangle traffic sign point clouds based on panoramic images. In this method, traffic sign point clouds are extracted based on arc feature and spatial semantic features analysis. Traffic signs in images are detected by colour and shape features and a convolutional neural network. Traffic sign point cloud and images are registered based on outline features. Finally, traffic sign points match traffic sign pixels to reconstruct the traffic sign point cloud. Experimental results have demonstrated that this proposed method can effectively obtain colourful and complete traffic sign point clouds with high resolution. Numéro de notice : A2022-254 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12398 Date de publication en ligne : 05/03/2022 En ligne : https://doi.org/10.1111/phor.12398 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100217
in Photogrammetric record > vol 37 n° 177 (March 2022) . - pp 87 - 110[article]Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
![]()
[article]
Titre : Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images Type de document : Article/Communication Auteurs : Xiao Li, Auteur ; Huan Ning, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 32 - 49 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carrefour
[Termes IGN] cartographie urbaine
[Termes IGN] couche thématique
[Termes IGN] exploration d'images
[Termes IGN] feu de circulation
[Termes IGN] image Streetview
[Termes IGN] Mapillary
[Termes IGN] réseau routier
[Termes IGN] segmentation d'image
[Termes IGN] signalisation routièreRésumé : (auteur) Auditing and mapping traffic infrastructure is a crucial task in urban management. For example, signalized intersections play an essential role in transportation management; however, effectively identifying these intersections remains unsolved. Traditionally, signalized intersection data are manually collected through field audits or checking street view images (SVIs), which is time-consuming and labor-intensive. This study proposes an effective protocol to identify signalized intersections using road networks and SVIs. First, we propose a six-step geoprocessing model to generate an intersection feature layer from road networks. Second, we utilize up to three nearest SVIs to capture streetscapes at each intersection. Then, a deep learning-based image segmentation model is adopted to recognize traffic light-related pixels from each SVI. Last, we design a post-processing step to generate new features characterizing SVIs’ segmentation results at each intersection and build a decision tree model to determine the traffic control type. Results demonstrate that the proposed protocol can effectively identify signalized intersections with an overall accuracy of 97.05%. It also proves the effectiveness of SVIs for auditing urban infrastructures. This study can directly benefit transportation agencies by providing a ready-to-use smart audit and mapping solution for large-scale identification and mapping of signalized intersections. Numéro de notice : A2022-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/15230406.2021.1992299 Date de publication en ligne : 16/11/2021 En ligne : https://doi.org/10.1080/15230406.2021.1992299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99148
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 32 - 49[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Double adaptive intensity-threshold method for uneven Lidar data to extract road markings / Chengming Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
PermalinkA multiagent systems with Petri Net approach for simulation of urban traffic networks / Mauricio Flores Geronimo in Computers, Environment and Urban Systems, vol 89 (September 2021)
PermalinkFlood depth mapping in street photos with image processing and deep neural networks / Bahareh Alizadeh Kharazi in Computers, Environment and Urban Systems, vol 88 (July 2021)
PermalinkUsing geometric constraints to improve performance of image classifiers for automatic segmentation of traffic signs / Roholah Yazdan in Geomatica, vol 75 n° 1 (Mars 2021)
PermalinkDeep traffic light detection by overlaying synthetic context on arbitrary natural images / Jean Pablo Vieira de Mello in Computers and graphics, vol 94 n° 1 (February 2021)
PermalinkImproving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkPermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
![]()
PermalinkDetecting and mapping traffic signs from Google Street View images using deep learning and GIS / Andrew Campbell in Computers, Environment and Urban Systems, vol 77 (september 2019)
PermalinkPavement marking retroreflectivity estimation and evaluation using mobile Lidar data / Erzhuo Che in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 8 (August 2019)
Permalink