Descripteur
Termes IGN > géomatique > données localisées > données localisées numériques > données laser
données laserSynonyme(s)levé par laserVoir aussi |
Documents disponibles dans cette catégorie (1590)


Etendre la recherche sur niveau(x) vers le bas
Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models / Asli Ozdarici-Ok in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models Type de document : Article/Communication Auteurs : Asli Ozdarici-Ok, Auteur ; Ali Ozgun Ok, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinus pinea
[Termes IGN] semis de points
[Termes IGN] TurquieRésumé : (auteur) Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle (UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information. Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner (HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the proposed methodology, which uses a single DSM as an input, secures overall pixel-based and object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context. Numéro de notice : A2022-620 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2090864 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2090864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101364
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms / Ningli Xu in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
![]()
[article]
Titre : Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms Type de document : Article/Communication Auteurs : Ningli Xu, Auteur ; Rongjun Qin, Auteur ; Shuang Song, Auteur Année de publication : 2023 Article en page(s) : n° 100032 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] chevauchement
[Termes IGN] données lidar
[Termes IGN] processus gaussien
[Termes IGN] recalage de données localisées
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) Three-dimensional (3D) point cloud registration is a fundamental step for many 3D modeling and mapping applications. Existing approaches are highly disparate in the data source, scene complexity, and application, therefore the current practices in various point cloud registration tasks are still ad-hoc processes. Recent advances in computer vision and deep learning have shown promising performance in estimating rigid/similarity transformation between unregistered point clouds of complex objects and scenes. However, their performances are mostly evaluated using a limited number of datasets from a single sensor (e.g. Kinect or RealSense cameras), lacking a comprehensive overview of their applicability in photogrammetric 3D mapping scenarios. In this work, we provide a comprehensive review of the state-of-the-art (SOTA) point cloud registration methods, where we analyze and evaluate these methods using a diverse set of point cloud data from indoor to satellite sources. The quantitative analysis allows for exploring the strengths, applicability, challenges, and future trends of these methods. In contrast to existing analysis works that introduce point cloud registration as a holistic process, our experimental analysis is based on its inherent two-step process to better comprehend these approaches including feature/keypoint-based initial coarse registration and dense fine registration through cloud-to-cloud (C2C) optimization. More than ten methods, including classic hand-crafted, deep-learning-based feature correspondence, and robust C2C methods were tested. We observed that the success rate of most of the algorithms are fewer than 40% over the datasets we tested and there are still are large margin of improvement upon existing algorithms concerning 3D sparse corresopondence search, and the ability to register point clouds with complex geometry and occlusions. With the evaluated statistics on three datasets, we conclude the best-performing methods for each step and provide our recommendations, and outlook future efforts. Numéro de notice : A2023-149 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100032 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102808
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100032[article]Analyse des performances de levers LiDAR via l’iPad Pro en vue de la réalisation de plans d’intérieurs et de maquettes numériques de bâtiments / Pauline Chardon in XYZ, n° 174 (mars 2023)
[article]
Titre : Analyse des performances de levers LiDAR via l’iPad Pro en vue de la réalisation de plans d’intérieurs et de maquettes numériques de bâtiments Type de document : Article/Communication Auteurs : Pauline Chardon, Auteur Année de publication : 2023 Article en page(s) : pp 39 - 43 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] lidar mobile
[Termes IGN] maquette numérique
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] téléphone intelligentRésumé : (Auteur) Depuis 2020, Apple intègre désormais un capteur LiDAR dans ses smartphones et tablettes les plus récents. À l’origine dédiée à la réalité augmentée, son utilisation pour les relevés métriques présente aujourd’hui un intérêt croissant. Devant ce constat, la société FUTURMAP a fait le choix de mener une étude approfondie sur le sujet, en collaboration avec un grand groupe spécialisé dans le diagnostic immobilier. L’objectif de cette étude est donc de mettre en place une nouvelle méthode d’acquisition basée sur les technologies LiDAR mobiles, dans le but d’établir un plan d’intérieur ou une maquette numérique 3D. Dans cette étude, nous avons ainsi approfondi la connaissance de ce système de numérisation afin de déterminer un processus de captation fiable des données. Plusieurs éléments ont été étudiés à la suite d’une série de tests afin de déterminer les limites et les contraintes de ce nouveau dispositif. Numéro de notice : A2023-170 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102851
in XYZ > n° 174 (mars 2023) . - pp 39 - 43[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 SL Revue Centre de documentation Revues en salle Disponible Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density / Grégoire Vincent in Remote sensing of environment, vol 286 (March 2023)
![]()
[article]
Titre : Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density Type de document : Article/Communication Auteurs : Grégoire Vincent, Auteur ; Philippe Verley, Auteur ; Benjamin Brede, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] canopée
[Termes IGN] densité de la végétation
[Termes IGN] données lidar
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] image captée par drone
[Termes IGN] plan de vol
[Termes IGN] rayonnement lumineux
[Termes IGN] réflectance végétale
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) Leaf area is a key structural characteristic of forest canopies because of the role of leaves in controlling many biological and physical processes occurring at the biosphere-atmosphere transition. High pulse density Airborne Laser Scanning (ALS) holds promise to provide spatially resolved and accurate estimates of plant area density (PAD) in forested landscapes, a key step in understanding forest functioning: phenology, carbon uptake, transpiration, radiative balance etc. Inconsistencies between different ALS sensors is a barrier to generating globally harmonised PAD estimates. The basic assumption on which PAD estimation is based is that light attenuation is proportional to vegetation area density. This study shows that the recorded extinction strongly depends on target detectability which is influenced by laser characteristics (power, sensitivity, wavelength). Three different airborne laser scanners were flown over a wet tropical forest at the Paracou research station in French Guiana. Different sensors, flight heights and transmitted power levels were compared. Light attenuation was retrieved with an open source ray-tracing code (http://amapvox.org). Direct comparison revealed marked differences (up-to 25% difference in profile-averaged light attenuation rate and 50% difference at particular heights) that could only be explained by differences in scanner characteristics. We show how bias which may occur under various acquisition conditions can generally be mitigated by a sensor intercalibration. Alignment of light weight lidar attenuation profiles to ALS reference attenuation profiles is not always satisfactory and we discuss what are the likely sources of discrepancies. Neglecting the dependency of apparent light attenuation on scanner properties may lead to biases in estimated vegetation density commensurate to those affecting light attenuation estimates. Applying intercalibration procedures supports estimation of plant area density independent of acquisition characteristics. Numéro de notice : A2023-169 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113442 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1016/j.rse.2022.113442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102928
in Remote sensing of environment > vol 286 (March 2023) . - n° 113442[article]Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction / Shuo Shi in ISPRS International journal of geo-information, vol 12 n° 3 (March 2023)
![]()
[article]
Titre : Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Xingtao Tang, Auteur ; Bowen Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse spectrale
[Termes IGN] arbre urbain
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Houston (Texas)
[Termes IGN] interpolation
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercial system that can collect point cloud data on 1550, 1064, and 532 nm channels. This study proposes a method of point cloud segmentation in the preprocessed intensity interpolation process to solve the problem of inaccurate intensity at the boundary during point cloud interpolation. The entire experiment consists of three steps. First, a multispectral lidar point cloud is obtained using point cloud segmentation and intensity interpolation; the spatial dimension advantage of the multispectral point cloud is used to improve the accuracy of spectral information interpolation. Second, point clouds are divided into eight categories by constructing geometric information, spectral reflectance information, and spectral characteristics. Accuracy evaluation and contribution analysis are also conducted through point cloud truth value and classification results. Lastly, the spatial dimension information is enhanced by point cloud drop sampling, the method is used to solve the error caused by airborne scanning and single-tree extraction of urban trees. Classification results showed that point cloud segmentation before intensity interpolation can effectively improve the interpolation and classification accuracies. The total classification accuracy of the data is improved by 3.7%. Compared with the extraction result (377) of single wood without subsampling treatment, the result of the urban tree extraction proved the effectiveness of the proposed method with a subsampling algorithm in improving the accuracy. Accordingly, the problem of over-segmentation is solved, and the final single-wood extraction result (329) is markedly consistent with the real situation of the region. Numéro de notice : A2023-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12030090 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.3390/ijgi12030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102852
in ISPRS International journal of geo-information > vol 12 n° 3 (March 2023) . - n° 90[article]Programme LiDAR HD : vers une nouvelle cartographie 3D du territoire / Terry Moreau in XYZ, n° 174 (mars 2023)
PermalinkSiamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
PermalinkThe potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
PermalinkLong-term changes in 3D urban form in four Spanish cities / Dario Domingo in Landscape and Urban Planning, vol 230 (February 2023)
PermalinkStochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data / Parvez Rana in Landscape and Urban Planning, vol 230 (February 2023)
PermalinkTopology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds / Xin Xu in International journal of applied Earth observation and geoinformation, vol 116 (February 2023)
PermalinkGIS-based planning of buffer zones for protection of boreal streams and their riparian forests / Heikki Mykrä in Forest ecology and management, vol 528 (January-15 2023)
PermalinkDecision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkEstimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
PermalinkExploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
Permalink