Descripteur
Documents disponibles dans cette catégorie (100)



Etendre la recherche sur niveau(x) vers le bas
Multi-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
![]()
[article]
Titre : Multi-modal temporal attention models for crop mapping from satellite time series Type de document : Article/Communication Auteurs : Vivien Sainte Fare Garnot , Auteur ; Loïc Landrieu
, Auteur ; Nesrine Chehata
, Auteur
Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : pp 294 - 305 Note générale : bibliographie
This work was partly supported by ASP, the French Payment Agency.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bande C
[Termes IGN] carte agricole
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] parcelle agricole
[Termes IGN] Pastis
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Optical and radar satellite time series are synergetic: optical images contain rich spectral information, while C-band radar captures useful geometrical information and is immune to cloud cover. Motivated by the recent success of temporal attention-based methods across multiple crop mapping tasks, we propose to investigate how these models can be adapted to operate on several modalities. We implement and evaluate multiple fusion schemes, including a novel approach and simple adjustments to the training procedure, significantly improving performance and efficiency with little added complexity. We show that most fusion schemes have advantages and drawbacks, making them relevant for specific settings. We then evaluate the benefit of multimodality across several tasks: parcel classification, pixel-based segmentation, and panoptic parcel segmentation. We show that by leveraging both optical and radar time series, multimodal temporal attention-based models can outmatch single-modality models in terms of performance and resilience to cloud cover. To conduct these experiments, we augment the PASTIS dataset (Garnot and Landrieu, 2021a) with spatially aligned radar image time series. The resulting dataset, PASTIS-R, constitutes the first large-scale, multimodal, and open-access satellite time series dataset with semantic and instance annotations. (Dataset available at: https://zenodo.org/record/5735646) Numéro de notice : A2022-157 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.012 Date de publication en ligne : 24/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100365
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 294 - 305[article]Voir aussiRéservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
![]()
[article]
Titre : Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Eze O. Amadi, Auteur Année de publication : 2022 Article en page(s) : pp 29 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] intégration de données
[Termes IGN] inventaire forestier local
[Termes IGN] Pinus (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] précision de la classification
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) The mapping of southern yellow pines (loblolly, shortleaf, and Virginia pines) is important to supporting forest inventory and the management of forest resources. The overall aim of this study was to examine the integration of Landsat Operational Land Imager (OLI ) optical data with Sentinel-1 microwave C-band satellite data and vegetation indices in mapping the canopy cover of southern yellow pines. Specifically, this study assessed the overall mapping accuracies of the canopy cover classification of southern yellow pines derived using four data-integration scenarios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation indices derived from satellite data—normalized difference vegetation index, soil-adjusted vegetation index, modified soil-adjusted vegetation index, transformed soil-adjusted vegetation index, and infrared percentage vegetation index; and 4) Landsat OLI with Sentinel-1 and vegetation indices. The results showed that the integration of Landsat OLI reflectance bands with Sentinel-1 backscattering coefficients and vegetation indices yielded the best overall classification accuracy, about 77%, and standalone Landsat OLI the weakest accuracy, approximately 67%. The findings in this study demonstrate that the addition of backscattering coefficients from Sentinel-1 and vegetation indices positively contributed to the mapping of southern yellow pines. Numéro de notice : A2022-062 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00024R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00024R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99706
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 29 - 38[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible Investigation of the landslides in Beylikdüzü-Esenyurt districts of Istanbul from InSAR and GNSS observations / Caglar Bayik in Natural Hazards, vol 109 n° 1 (October 2021)
![]()
[article]
Titre : Investigation of the landslides in Beylikdüzü-Esenyurt districts of Istanbul from InSAR and GNSS observations Type de document : Article/Communication Auteurs : Caglar Bayik, Auteur ; Saygin Abdikan, Auteur ; Alpay Ozdemir, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1201 - 1220 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse diachronique
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] données géologiques
[Termes IGN] données GNSS
[Termes IGN] effondrement de terrain
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Istanbul (Turquie)
[Termes IGN] surveillance géologique
[Termes IGN] urbanisationRésumé : (auteur) This study aims to detect recent landslide displacements caused by geological structure of the region where there is intense urbanization using advanced Interferometric Synthetic Aperture Radar (InSAR) techniques and with Global Navigation Satellite Systems (GNSS) observations in the Beylikdüzü and Esenyurt districts in Istanbul megacity, Turkey. In this study, multiple satellites with different frequencies (C-band, L-band) and periodic GNSS observations were employed. For the entire peninsula, we processed 149 images from the ascending orbit, 144 images from the descending orbit of Sentinel-1 (C-Band) and 24 ALOS-2 (L-band) images from the ascending orbit. The evaluations were carried out in the period between 2015 and 2020 for Sentinel-1 imagery and 2015–2020 for ALOS-2 imagery respectively. Since the study area is covered by dense settlements, the Persistent Scatterer InSAR (PSI) technique was utilized to determine the landslide behaviors. According to the results, for both orbits of the Sentinel-1, the horizontal displacement and the vertical displacement were observed in the range of − 10 to 6 mm. Compared to the magnitude of displacement signal measured by Sentinel-1, ALOS-2 data has higher values due to the high surface penetration of the L-band. The results showed that most of the old landslide regions are reactivated. Horizontal movement derived through Sentinel-1 showed that the highest movement overlaps with old landslides. L-band ALOS-2 provided better spatial coverage of landslide movement than C-band Sentinel-1 data, especially at the rural Numéro de notice : A2021-752 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT/URBANISME Nature : Article DOI : 10.1007/s11069-021-04875-7 Date de publication en ligne : 20/06/2021 En ligne : https://doi.org/10.1007/s11069-021-04875-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98737
in Natural Hazards > vol 109 n° 1 (October 2021) . - pp 1201 - 1220[article]Sentinel-1 sensitivity to soil moisture at high incidence angle and the impact on retrieval over seasonal crops / Davide Palmisano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
![]()
[article]
Titre : Sentinel-1 sensitivity to soil moisture at high incidence angle and the impact on retrieval over seasonal crops Type de document : Article/Communication Auteurs : Davide Palmisano, Auteur ; Francesco Mattia, Auteur ; Anna Balenzano, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7308 - 7321 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse de sensibilité
[Termes IGN] angle d'incidence
[Termes IGN] bande C
[Termes IGN] carte agricole
[Termes IGN] Castille-et-Leon (Espagne)
[Termes IGN] corrélation temporelle
[Termes IGN] cultures
[Termes IGN] humidité du sol
[Termes IGN] image Sentinel-SAR
[Termes IGN] Pouilles (Italie)
[Termes IGN] réseau hydrographique
[Termes IGN] rétrodiffusion
[Termes IGN] transfert radiatifRésumé : (auteur) Approximately, 30% of the Sentinel-1 (S-1) swath over land is imaged with incidence angles higher than 40°. Still, the interplay among the scattering mechanisms taking place at such a high incidence and their implications on the backscatter information content is often disregarded. This article investigates, through an experimental and numerical study, the S-1 sensitivity to the surface soil moisture (SSM) over agricultural fields observed at low (~33°) and high (~43°) incidence angles and quantifies the impact of the incidence angle on the SSM retrieval accuracy. The study sites are the Apulian Tavoliere (Italy) and REd de MEDición de la HUmedad del Suelo (REMEDHUS) (Spain), which are both instrumented with a hydrologic network continuously measuring SSM. At low incidence angles, results confirm that for crops such as wheat and barley, dominated in C-band by surface scattering, there exists a good sensitivity of S-1 VV to SSM. At high incidence angles, the sensitivity to SSM holds through the combination of the soil attenuated and double bounce scattering. Conversely, over crops dominated by volume scattering, such as sugar beet, the S-1 VV signal is not correlated with the in situ SSM observations, neither at low nor at high incidence. For all the crops, the sensitivity of S-1 to SSM in VH is found significantly lower than in VV. The impact of the incidence angle on the SSM retrieval has been studied with a recursive algorithm based on a short-term change detection approach. An upper and lower bounds for the worsening of the S-1 VV retrieval performance at far versus near range observations have been estimated. In the worst-case scenario, the root mean square error (RMSE) increases from ~0.056 m 3 /m 3 , at low incidence, to ~0.071 m 3 /m 3 , at high incidence. The mechanism that lowers the retrieval accuracy at high incidence angles is further investigated in the synthetic experiment and its impact on the RMSE is estimated in terms of the volume scattering contribution. Numéro de notice : A2021-646 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3033887 Date de publication en ligne : 10/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3033887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98351
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7308 - 7321[article]Estimation of surface deformation due to Pasni earthquake using RADAR interferometry / Muhammad Ali in Geocarto international, vol 36 n° 14 ([01/08/2021])
![]()
[article]
Titre : Estimation of surface deformation due to Pasni earthquake using RADAR interferometry Type de document : Article/Communication Auteurs : Muhammad Ali, Auteur ; Muhammad Shahzad, Auteur ; Majir Nazeer, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1630 - 1645 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] déformation de surface
[Termes IGN] déformation verticale de la croute terrestre
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Pakistan
[Termes IGN] polarisation
[Termes IGN] rapport signal sur bruit
[Termes IGN] séisme
[Termes IGN] série temporelleRésumé : (auteur) This study analyzed the land deformation associated with Mw 6.3 earthquake along Pasni coast, Pakistan. Post-earthquake widespread surface displacements were found using Sentinel-1 data. Pre, Co and Post-seismic images were used to investigate the deformation trends. Before the earthquake, 89.65% of Pasni land mass showed uplifting from 0.0 to 3.0 cm at 1.00 mm/day while 3.0 cm subsidence was noted in 86.36% of the land mass after the earthquake at 2.5 mm/day. However, two weeks after the earthquake, 72.9% Pasni land mass showed uplifting at an unprecedented rate of 3.3 mm/day. The maximum deformation along the Line Of Sight (LOS) direction in co-seismic time was about -4.0 cm. Azimuthal interferogram showed more complex displacement pattern with both negative and positive displacements between ±5.0 cm. Pasni is already facing many problems due to increased sea water intrusion under prevailing climatic changes and land deformation due to strong earthquakes. Numéro de notice : A2021-557 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1661031 Date de publication en ligne : 09/09/2019 En ligne : https://doi.org/10.1080/10106049.2019.1661031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98110
in Geocarto international > vol 36 n° 14 [01/08/2021] . - pp 1630 - 1645[article]Aboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data : The superiority of deep learning over a semi-empirical model / S.M. Ghosh in Computers & geosciences, vol 150 (May 2021)
PermalinkA soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])
PermalinkCluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkSaline-soil deformation extraction based on an improved time-series InSAR approach / Wei Xiang in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkDeep learning for wildfire progression monitoring using SAR and optical satellite image time series / Puzhao Zhang (2021)
PermalinkDiurnal cycles of C-band temporal coherence and backscattering coefficient over an olive orchard in a semi-arid area: Comparison of in situ and Sentinel-1 radar observations / Adnane Chakir (2021)
PermalinkDiurnal cycles of C-band temporal coherence and backscattering coefficient over a wheat field in a semi-arid area / Nadia Ouaadi (2021)
PermalinkFlood mapping from radar remote sensing using automated image classification techniques / Lisa Landuyt (2021)
PermalinkMonitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
PermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
Permalink