Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > spectre électromagnétique > bande spectrale
bande spectraleSynonyme(s)canal spectral |
Documents disponibles dans cette catégorie (543)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT / Shengli Tao in Earth System Science Data, vol 15 n° 4 (2023)
[article]
Titre : A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT Type de document : Article/Communication Auteurs : Shengli Tao, Auteur ; Zurui Ao, Auteur ; Jean-Pierre Wigneron, Auteur ; Sassan Saatchi, Auteur ; Philippe Ciais, Auteur ; Jérôme Chave, Auteur ; Thuy Le Toan, Auteur ; Pierre-Louis Frison , Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1577 - 1596 Note générale : bibliographie
Data description paperLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bande Ku
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] régression
[Termes IGN] série temporelleRésumé : (auteur) Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface roughness and has thus been used in a range of Earth science disciplines. However, there is no single global radar data set that has a relatively long wavelength and a decades-long time span. We here provide the first long-term (since 1992), high-resolution (∼8.9 km instead of the commonly used ∼25 km resolution) monthly satellite radar backscatter data set over global land areas, called the long-term, high-resolution scatterometer (LHScat) data set, by fusing signals from the European Remote Sensing satellite (ERS; 1992–2001; C-band; 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009; Ku-band; 13.4 GHz), and the Advanced SCATterometer (ASCAT; since 2007; C-band; 5.255 GHz). The 6-year data gap between C-band ERS and ASCAT was filled by modelling a substitute C-band signal during 1999–2009 from Ku-band QSCAT signals and climatic information. To this end, we first rescaled the signals from different sensors, pixel by pixel. We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals by modelling the signal differences from climatic variables (i.e. monthly precipitation, skin temperature, and snow depth) using decision tree regression. The quality of the merged radar signal was assessed by computing the Pearson r, root mean square error (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the regional (r≥0.92, RMSE ≤ 0.11 dB, and rRMSE ≤ 0.38) and pixel levels (median r across pixels ≥ 0.64, median RMSE ≤ 0.34 dB, and median rRMSE ≤ 0.88), suggesting high accuracy for the data-merging procedure. The merged radar signals were then validated against the European Space Agency (ESA) ERS-2 data, which provide observations for a subset of global pixels until 2011, even after the failure of on-board gyroscopes in 2001. We found highly concordant monthly dynamics between the merged radar signals and the ESA ERS-2 signals, with regional Pearson r values ranging from 0.79 to 0.98. These results showed that our merged radar data have a consistent C-band signal dynamic. The LHScat data set (https://doi.org/10.6084/m9.figshare.20407857; Tao et al., 2023) is expected to advance our understanding of the long-term changes in, e.g., global vegetation and soil moisture with a high spatial resolution. The data set will be updated on a regular basis to include the latest images acquired by ASCAT and to include even higher spatial and temporal resolutions. Numéro de notice : A2023-097 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-15-1577-2023 Date de publication en ligne : 12/04/2023 En ligne : https://doi.org/10.5194/essd-15-1577-2023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103215
in Earth System Science Data > vol 15 n° 4 (2023) . - pp 1577 - 1596[article]Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network Type de document : Article/Communication Auteurs : Jingan Wu, Auteur ; Liupeng Lin, Auteur ; Chi Zhang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 16 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] approche hiérarchique
[Termes IGN] bande spectrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre passe-haut
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSIRésumé : (Auteur) Earth observations from the Sentinel-2 mission have been extensively accepted in a variety of land services. The thirteen spectral bands of Sentinel-2, however, are collected at three spatial resolutions of 10/20/60 m, and such a difference brings difficulties to analyze multispectral imagery at a uniform resolution. To address this problem, we developed a hierarchical fusion network (HFN) to sharpen 20/60-m bands and generate Sentinel-2 all-band 10-m data. The deep learning architecture is used to learn the complex mapping between multi-resolution input and output data. Given the deficiency of previous studies in which the spatial information is inferred only from the fine-resolution bands, the proposed hierarchical fusion framework simultaneously leverages the self-similarity information from coarse-resolution bands and the spatial structure information from fine-resolution bands, to enhance the sharpening performance. Technically, the coarse-resolution bands are super-resolved by exploiting the information from themselves and then sharpened by fusing with the fine-resolution bands. Both 20-m and 60-m bands can be sharpened via the developed approach. Experimental results regarding visual comparison and quantitative assessment demonstrate that HFN outperforms the other benchmarking models, including pan-sharpening-based, model-based, geostatistical-based, and other deep-learning-based approaches, showing remarkable performance in reproducing explicit spatial details and maintaining original spectral features. Moreover, the developed model works more effectively than the other models over the heterogeneous landscape, which is usually considered a challenging application scenario. To sum up, the fusion model can sharpen Sentinel-2 20/60-m bands, and the created all-band 10-m data allows image analysis and geoscience applications to be authentically carried out at the 10-m resolution. Numéro de notice : A2023-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.017 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102392
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 16 - 31[article]L’altimétrie radar remonte les fleuves / Laurent Polidori in Géomètre, n° 2209 (janvier 2023)
[article]
Titre : L’altimétrie radar remonte les fleuves Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 17 - 17 Langues : Français (fre) Descripteur : [Termes IGN] altimétrie satellitaire par radar
[Termes IGN] bande K
[Termes IGN] hauteurs de mer
[Termes IGN] image à haute résolution
[Termes IGN] image SWOT
[Termes IGN] niveau de l'eau
[Vedettes matières IGN] AltimétrieRésumé : (Auteur) Le niveau des océans est mesuré finement depuis trente ans. Lancé le 15 décembre dernier, le satellite franco-américain Swot offre une résolution sans précédent qui permettra de connaître le niveau des eaux continentales, y compris sur des lacs et rivières de petite taille. Numéro de notice : A2023-062 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102361
in Géomètre > n° 2209 (janvier 2023) . - pp 17 - 17[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023011 RAB Revue Centre de documentation En réserve L003 Disponible Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine Type de document : Article/Communication Auteurs : Xingwen Lin, Auteur ; Shengbiao Wu, Auteur ; Bin Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Land surface albedo plays an important role in controlling the surface energy budget and regulating the biophysical processes of natural dynamics and anthropogenic activities. Satellite remote sensing is the only practical approach to estimate surface albedo at regional and global scales. It nevertheless remains challenging for current satellites to capture fine-scale albedo variations due to their coarse spatial resolutions from tens to hundreds of meters. The emerging Sentinel-2 satellites, with a high spatial resolution of 10 m and an approximate 5-day revisiting cycle, provide a promising solution to address these observational limitations, yet their potentials remain underexplored. In this study, we integrated the Sentinel-2 observations with an updated direct estimation approach to improve the estimation and monitoring of fine-scale surface albedo. To enable the capability of the direct estimation approach at a 10-m scale, we combined the 10-m resolution European Space Agency (ESA) WorldCover land cover data and the 500-m resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/albedo product to build a high-quality and representative BRDF training database. To evaluate our approach, we proposed an integrated evaluation framework leveraging 3-D physical model simulations, ground measurements, and satellite observations. Specifically, we first simulated a comprehensive dataset of Sentinel-2-like surface reflectance and broadband albedo across a variety of geometric configurations using the MODIS BRDF training samples. With this dataset, we built the Look-Up-Tables (LUTs) that connect surface broadband albedo and Sentinel-2 reflectance through a direct angular bin-based linear regression approach, and further coupled these LUTs with the Google Earth Engine (GEE) cloud-computing platform. We next evaluated the proposed algorithm at two spatial levels: (1) 10-m scale for absolute accuracy assessment using the references from the Discrete Anisotropic Radiative Transfer (DART) simulations and flux-site observations, and (2) 500-m scale for large-scale mapping assessment by comparing the estimated albedo with the MODIS albedo product. Lastly, we presented four examples to show the capability of Sentinel-2 albedo in detecting fine-scale characteristics of vegetation and urban covers. Results show that: (1) the proposed algorithm accurately estimates surface albedo from Sentinel-2-like reflectance across different landscape configurations (overall root-mean-square-error (RMSE) = 0.018, bias = 0.005, and coefficient of determination (R2) = 0.88); (2) the Sentinel-2-derived surface albedo agrees well with ground measurements (overall RMSE = 0.030, bias = -0.004, and R2 = 0.94) and MODIS products (overall RMSE = 0.030, bias = 0.021, and R2 = 0.97); and (3) Sentinel-2-derived albedo accurately captures seasonal leaf phenology and rapid snow events, and detects the interspecific (or interclass) variations of tree species and colored urban rooftops. These results demonstrate the capability of the proposed approach to map high-resolution surface albedo from Sentinel-2 satellites over large spatial and temporal contexts, suggesting the potential of using such fine-scale datasets to improve our understanding of albedo-related biophysical processes in the coupled human-environment system. Numéro de notice : A2022-823 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.016 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101999
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 1 - 20[article]Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)
[article]
Titre : Fusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands Type de document : Article/Communication Auteurs : Katrin Krzepek, Auteur ; Jacob Schmidt, Auteur ; Dorota Iwaszczuk, Auteur Année de publication : 2022 Article en page(s) : pp 561 - 575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] aquifère
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] bande C
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Water Index
[Termes IGN] puits de carbone
[Termes IGN] seuillage d'image
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] tourbièreRésumé : (auteur) Peatlands as natural carbon sinks have a major impact on the climate balance and should therefore be monitored and protected. The hydrology of the peatland serves as an indicator of the carbon storage capacity. Hence, we investigate the question how suitable different remote sensing data are for monitoring the size of open water surface and the water table depth (WTD) of a peatland ecosystem. Furthermore, we examine the potential of combining remote sensing data for this purpose. We use C-band synthetic aperture radar (SAR) data from Sentinel-1 and multi-spectral data from Sentinel-2. The radar backscatter σ0, the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) are calculated and used for consideration of the WTD and the lake size. For the measurement of the lake size, we implement and investigate the methods: random forest, adaptive thresholding and an analysis according to the Dempster–Shafer theory. Correlations between WTD and the remote sensing data σ0 as well as NDWI are investigated. When looking at the individual data sets the results of our case study show that the VH polarized σ0 data produces the clearest delineation of the peatland lake. However the adaptive thresholding of the weighted fusion image of σ0-VH, σ0-VV and MNDWI, and the random forest algorithm with all three data sets as input proves to be the most suitable for determining the lake area. The correlation coefficients between σ0/NDWI and WTD vary greatly and lie in ranges of low to moderate correlation. Numéro de notice : A2022-942 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s41064-022-00216-w Date de publication en ligne : 06/09/2022 En ligne : https://doi.org/10.1007/s41064-022-00216-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102876
in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science > vol 90 n° 6 (December 2022) . - pp 561 - 575[article]An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)PermalinkThe FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)PermalinkComparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])PermalinkMapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)PermalinkDART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)PermalinkAlternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)PermalinkMulti-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)PermalinkDirect photogrammetry with multispectral imagery for UAV-based snow depth estimation / Kathrin Maier in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)PermalinkPolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)PermalinkCalibrating GNSS phase biases with onboard observations of low earth orbit satellites / Xingxing Li in Journal of geodesy, vol 96 n° 2 (February 2022)Permalink