Descripteur
Documents disponibles dans cette catégorie (68)



Etendre la recherche sur niveau(x) vers le bas
Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Alvar J. I. Kallio, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dépérissement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] Norvège
[Termes IGN] Perceptron multicouche
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] régression logistique
[Termes IGN] santé des forêts
[Termes IGN] semis de pointsRésumé : (auteur) Wood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were small. Numéro de notice : A2022-352 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.3390/rs14081892 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.3390/rs14081892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100541
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1892[article]Building detection with convolutional networks trained with transfer learning / Simon Šanca in Geodetski vestnik, vol 65 n° 4 (December 2021 - February 2022)
![]()
[article]
Titre : Building detection with convolutional networks trained with transfer learning Type de document : Article/Communication Auteurs : Simon Šanca, Auteur ; Krištof Oštir, Auteur ; Alen Mangafić, Auteur Année de publication : 2021 Article en page(s) : pp 559 - 576 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification automatique d'objets
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] données cadastrales
[Termes IGN] image aérienne
[Termes IGN] image infrarouge couleur
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] orthoimage couleur
[Termes IGN] segmentation d'image
[Termes IGN] SlovénieRésumé : (Auteur) Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning. Numéro de notice : A2021-930 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.15292/geodetski-vestnik.2021.04.559-593 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.15292/geodetski-vestnik.2021.04.559-593 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99409
in Geodetski vestnik > vol 65 n° 4 (December 2021 - February 2022) . - pp 559 - 576[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 139-2021041 SL Revue Centre de documentation Revues en salle Disponible National scale mapping of larch plantations for Wales using the Sentinel-2 data archive / Suvarna M. Punalekar in Forest ecology and management, vol 501 (1 December 2021)
![]()
[article]
Titre : National scale mapping of larch plantations for Wales using the Sentinel-2 data archive Type de document : Article/Communication Auteurs : Suvarna M. Punalekar, Auteur ; Carole Planque, Auteur ; Richard M. Lucas, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] carte forestière
[Termes IGN] coupe rase (sylviculture)
[Termes IGN] gestion forestière
[Termes IGN] image infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Larix decidua
[Termes IGN] maladie phytosanitaire
[Termes IGN] modélisation de la forêt
[Termes IGN] Pays de Galles
[Termes IGN] surveillance forestièreRésumé : (auteur) Accurate spatial information regarding forest types and tree species is immensely important for efficient forest management strategies. In the UK and particularly in Wales, creating a spatial inventory of larch (Larix sps.) plantations that encompasses both the public and private forests has become one of the highest priorities of woodland management policies, particularly given the need to respond to the rapid spread of Phytophthora ramorum fungal disease. For directing disease control measures, national scale, regularly updated mapping of larch distributions is essential. In this study, we applied a ExtraTree classifier machine learning algorithm to multi-year (June 2015 and December 2019) multi-path composites of vegetation indices derived from 10 m Sentinel-2 satellite data (spectral range used in this study: 490–2190 nm) to map the extent of larch plantations across Wales. For areas identified as woody vegetation, areas under larch plantations were associated with a needle-leaved leaf type and deciduous phenology, allowing differentiation from broad-leaved deciduous and needle-leaved evergreen types. The model accuracies for validation, which included overall accuracy, producer’s and user’s accuracies, exceeded 95% and the F1-score was greater than 0.97 for all forest types. Comparison against an independent reference dataset indicated all map accuracies above 90% (F1-score higher than 0.92) with the lowest value being 90.3% for the producer’s accuracy for larch. Short wave infrared and red-edge based indices were particularly useful for discriminating larch from other forest types. Capacity for updating information on clear-felling of larch stands through annual updates of a woody mask was also introduced. The resulting maps of larch plantations for Wales are the most current for Wales covering public as well as private woodlands and can be routinely updated. The classification approach has potential to be transferred to a wider geographical area given the availability of open-source multi-year Sentienl-2 datasets and robust calibration datasets. Numéro de notice : A2021-741 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119679 Date de publication en ligne : 20/09/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98657
in Forest ecology and management > vol 501 (1 December 2021) . - n° 119679[article]Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
![]()
[article]
Titre : Cloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques Type de document : Article/Communication Auteurs : Miao Tian, Auteur ; Hao Chen, Auteur ; Guanghui Liu, Auteur Année de publication : 2021 Article en page(s) : pp 2781 - 2793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection des nuages
[Termes IGN] dioxyde de carbone
[Termes IGN] image infrarouge
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] régression linéaire
[Termes IGN] vapeur d'eauRésumé : (auteur) Accurate cloud detection using infrared (IR) data is very challenging due to the limitations and uncertainties from many aspects in the satellite IR remote sensing. This article proposes an end-to-end cloud detection method for the Cross-track IR Sounder (CrIS) using machine learning (ML) techniques. The brightness temperatures from paired CrIS channels in the longwave and midwave water vapor bands and the longwave and shortwave CO 2 bands are used. After obtaining the linear regression coefficients for each of the selected channel pairs, a complete set of CrIS full spectral resolution (FSR) cloud detection index (FCDI) is derived from the temperature difference between the regression and observation for each channel pair. It is shown that FCDI captures cloud location and structure well by comparing with the cloud products (CPs) from the Visible IR Imaging Radiometer Suite (VIIRS). After collocating FCDI with VIIRS CP, ML techniques such as the extreme learning machine, support vector machine, and multilayer perceptron are used to train the collocated FCDIs for cloud detection. Simulation results show that the accuracy of FCDI cloud detection is slightly above 80%. Moreover, the results encourage the use of water vapor bands in FCDI, in addition to CO 2 bands. Numéro de notice : A2021-281 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020120 Date de publication en ligne : 18/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020120 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97387
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2781 - 2793[article]Characterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : Characterizing urban land changes of 30 global megacities using nighttime light time series stacks Type de document : Article/Communication Auteurs : Qiming Zheng, Auteur ; Qihao Weng, Auteur ; Ke Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement foncier
[Termes IGN] analyse harmonique
[Termes IGN] cartographie urbaine
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] éclairage public
[Termes IGN] image infrarouge
[Termes IGN] image NPP-VIIRS
[Termes IGN] mégalopole
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Worldwide urbanization has brought about diverse types of urban land use and land cover (LULC) changes. The diversity of urban land changes, however, have been greatly under studied, since the major focus of past research has been on urban growth. In this study, we proposed a framework to characterize diverse urban land changes of 30 global megacities using monthly nighttime light time series from VIIRS data. First, we developed a Logistic-Harmonic model to fit VIIRS time series. Second, by leveraging the uniqueness of urban land change and nighttime light data, we incorporated temporal information of VIIRS time series and proposed a new classification scheme to produce monthly maps of built-up areas and to disentangle urban land changes into five categories. Third, we provided an in-depth analysis and comparison of urban land change patterns of the selected megacities. Results demonstrated that the Logistic-Harmonic model yielded a robust performance in fitting VIIRS time series. Temporal features based classification can not only significantly improve the mapping accuracy of built-up areas, especially for regions with heterogeneous built-up and non-built-up landscapes, but also promoted temporal consistency and classification efficiency. Urban land changes occurred in 51% of the built-up pixels of the megacities. Compared with urban growth, other types of urban land change, particularly land use intensification, contributed to an unexpectedly large proportion of the changes (83%). The findings of this study offer an insightful understanding on global urbanization processes in megacities, and evoke further investigation on the environmental and ecological implications of urban land changes. Numéro de notice : A2021-101 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.002 Date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.002 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96873
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 10 - 23[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkPermalinkMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkAqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
PermalinkAssessment of malaria hazard, vulnerability, and risks in Dire Dawa City Administration of eastern Ethiopia using GIS and remote sensing / Abdinasir Moha in Applied geomatics, vol 12 n° 1 (April 2020)
PermalinkSimultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints / Li Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkGeneralized tensor regression for hyperspectral image classification / Jianjun Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkPermalinkPermalinkUsing remote sensing to assess the effect of time of day on the spatial and temporal variation of LST in urban areas / Akram Abdulla (2020)
Permalink