Descripteur
Termes descripteurs IGN > imagerie > image numérique > image optique > image infrarouge
image infrarouge |



Etendre la recherche sur niveau(x) vers le bas
Characterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Characterizing urban land changes of 30 global megacities using nighttime light time series stacks Type de document : Article/Communication Auteurs : Qiming Zheng, Auteur ; Qihao Weng, Auteur ; Ke Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aménagement foncier
[Termes descripteurs IGN] analyse harmonique
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] éclairage public
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] image VIIRS
[Termes descripteurs IGN] mégalopole
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Worldwide urbanization has brought about diverse types of urban land use and land cover (LULC) changes. The diversity of urban land changes, however, have been greatly under studied, since the major focus of past research has been on urban growth. In this study, we proposed a framework to characterize diverse urban land changes of 30 global megacities using monthly nighttime light time series from VIIRS data. First, we developed a Logistic-Harmonic model to fit VIIRS time series. Second, by leveraging the uniqueness of urban land change and nighttime light data, we incorporated temporal information of VIIRS time series and proposed a new classification scheme to produce monthly maps of built-up areas and to disentangle urban land changes into five categories. Third, we provided an in-depth analysis and comparison of urban land change patterns of the selected megacities. Results demonstrated that the Logistic-Harmonic model yielded a robust performance in fitting VIIRS time series. Temporal features based classification can not only significantly improve the mapping accuracy of built-up areas, especially for regions with heterogeneous built-up and non-built-up landscapes, but also promoted temporal consistency and classification efficiency. Urban land changes occurred in 51% of the built-up pixels of the megacities. Compared with urban growth, other types of urban land change, particularly land use intensification, contributed to an unexpectedly large proportion of the changes (83%). The findings of this study offer an insightful understanding on global urbanization processes in megacities, and evoke further investigation on the environmental and ecological implications of urban land changes. Numéro de notice : A2021-101 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.002 date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.002 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96873
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 10 - 23[article]Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network Type de document : Article/Communication Auteurs : Xiaoming Liu, Auteur ; Menghua Wang, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] bande infrarouge
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] couleur de l'océan
[Termes descripteurs IGN] image infrarouge couleur
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image NPP-VIIRS
[Termes descripteurs IGN] rayonnementRésumé : (auteur) Since its launch in October 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has provided high quality global ocean color products, which include normalized water-leaving radiance spectra nLw ( λ ) of six moderate (M) bands (M1–M6) at the wavelengths of 410, 443, 486, 551, 671, and 745 nm with a spatial resolution of 750-m, and one imagery (I) band at a wavelength of 638 nm with a spatial resolution of 375-m. Because the high-resolution I-band measurements are highly correlated spectrally to those of M-band data, it can be used as a guidance to super-resolve the M-band nLw ( λ ) imagery from 750- to 375-m spatial resolution. Super-resolving images from coarse spatial resolution to finer ones have been a field of very active research in recent years. However, no previous studies have been applied to satellite ocean color remote sensing, in particular, for VIIRS ocean color applications. In this study, we employ the deep convolutional neural network (CNN) technique to glean the high-frequency content from the VIIRS I1 band and transfer to super-resolved M-band ocean color images. The network is trained to super-resolve each of the VIIRS six M-bands nLw ( λ ) separately. In our results, the super-resolved (375-m) nLw ( λ ) images are much sharper and show finer spatial structures than the original images. Quantitative evaluations show that biases between the super-resolved and original nLw ( λ ) images are small for all bands. However, errors in the super-resolved nLw ( λ ) images are wavelength-dependent. The smallest error is found in the super-resolved nLw (551) and nLw (671) images, and error increases as the wavelength decreases from 486 to 410 nm. The results show that the networks have the capability to capture the correlations of the M-band and the I1 band images to super-resolved M-band images. Numéro de notice : A2021-031 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992912 date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992912 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96726
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 114 - 127[article]
[article]
Titre : Bretagne, la végétation cartographiée Type de document : Article/Communication Auteurs : Marielle Mayo, Auteur Année de publication : 2020 Article en page(s) : pp 46 - 49 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] 1:25.000
[Termes descripteurs IGN] acquisition d'images
[Termes descripteurs IGN] aménagement régional
[Termes descripteurs IGN] appariement semi-automatique
[Termes descripteurs IGN] ArcGIS
[Termes descripteurs IGN] BD ortho
[Termes descripteurs IGN] Bretagne
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] données publiques
[Termes descripteurs IGN] écologie végétale
[Termes descripteurs IGN] IGN cité
[Termes descripteurs IGN] image infrarouge couleur
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] modèle orienté objetRésumé : (Auteur) Une cartographie inédite de la végétation de Bretagne sera accessible en totalité en ligne en décembre. Produite par télédétection grâce à une méthode semi-automatisée innovante, elle répond aux nouveaux besoins des acteurs de la biodiversité et de l'aménagement du territoire. Numéro de notice : A2020-707 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96281
in Géomètre > n° 2185 (novembre 2020) . - pp 46 - 49[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 063-2020101 SL Revue Centre de documentation Revues en salle Disponible Multiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
![]()
[article]
Titre : Multiview automatic target recognition for infrared imagery using collaborative sparse priors Type de document : Article/Communication Auteurs : Xuelu Li, Auteur ; Vishal Monga, Auteur ; Abhijit Mahalanobis, Auteur Année de publication : 2020 Article en page(s) : pp 6776 - 6790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] ajustement de paramètres
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] données clairsemées
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image à basse résolution
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] reconnaissance automatiqueRésumé : (auteur) The low resolution of infrared (IR) images makes feature extraction for classification of a challenging work. Learning-based methods, therefore, are preferred to be used on such raw imagery. In this article, in order to avoid difficulties in feature extraction, a novel multitask extension of the widely used sparse-representation-classification (SRC) method is proposed in both single and multiview set-ups. That is, the test sample could be a single IR image or images from different views. In both single-view and multiview scenarios, we try to employ collaborative spike and slab priors. This is because the traditional sparsity-inducing measures such as the l0 -row pseudonorm makes it hard to capture the sparse structure of the coefficient matrix when expanded in terms of a training dictionary, and the priors are proved to be able to capture fairly general sparse structures. Furthermore, a joint prior and sparse coefficient estimation method (JPCEM) is proposed for the first time in this article in order to alleviate the need to handpick prior parameters required before classification. Multiple experiments are conducted on a synthetic Comanche Forward Looking IR (FLIR) Automatic Target Recognition (ATR) database collected by Army Research Lab and a challenging mid-wave IR (MWIR) image ATR database made available by the U.S. Army Night Vision and Electronic Sensors Directorate. The final results substantiate the merits of the proposed JPCEM through comparisons with other state-of-the-art methods, including both the ones based on SRC and the ones constructed using deep learning frameworks. Numéro de notice : A2020-584 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973969 date de publication en ligne : 26/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95908
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 6776 - 6790[article]Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
![]()
[article]
Titre : Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy Type de document : Article/Communication Auteurs : Hrishikesh Kumar, Auteur ; A.S. Rajawat, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] cartographie géologique
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] minéral
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] Rajasthan (Inde ; état)
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] roche
[Termes descripteurs IGN] spectroradiométrieRésumé : (auteur) Hyperspectral remote sensing/imaging spectroscopy has enabled precise identification and mapping of hydrothermal alteration mineral assemblages based on diagnostic absorption features of minerals. In the present study, we use Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets acquired over Rishabdev ultramafic suite to derive surficial mineral map using least square based spectral shape matching in wavelength range of diagnostic absorption features of minerals. Resulting mineral map revealed presence of hydrothermally altered serpentine group of minerals and associated alteration products (talc and dolomite) along with clays and phyllosilicates. Mineral maps are validated using field spectral measurements and published geological map. Involvement of low temperature ( Numéro de notice : A2020-449 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102084 date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102084 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95525
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020)[article]Assessment of malaria hazard, vulnerability, and risks in Dire Dawa City Administration of eastern Ethiopia using GIS and remote sensing / Abdinasir Moha in Applied geomatics, vol 12 n° 1 (April 2020)
PermalinkSimultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints / Li Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
PermalinkGeneralized tensor regression for hyperspectral image classification / Jianjun Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkPermalinkPermalinkA machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
PermalinkAlbedo estimation for real-time 3D reconstruction using RGB-D and IR data / Patrick Stotko in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
PermalinkTree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis / Matheus Pinheiro Ferreira in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
PermalinkUnderstanding of atmospheric systems with efficient numerical methods for observation and prediction / Lei-Ming Ma (2019)
PermalinkPermalink