Descripteur
Termes IGN > informatique > intelligence artificielle > ingénierie des connaissances > représentation des connaissances > réseau sémantique
réseau sémantiqueSynonyme(s)graphe de connaissancesVoir aussi |
Documents disponibles dans cette catégorie (42)



Etendre la recherche sur niveau(x) vers le bas
LinkClimate: An interoperable knowledge graph platform for climate data / Jiantao Wu in Computers & geosciences, vol 169 (December 2022)
![]()
[article]
Titre : LinkClimate: An interoperable knowledge graph platform for climate data Type de document : Article/Communication Auteurs : Jiantao Wu, Auteur ; Fabrizio Orlandi, Auteur ; Declan O'Sullivan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105215 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] données multisources
[Termes IGN] historique des données
[Termes IGN] interopérabilité sémantique
[Termes IGN] National oceanic and atmospheric administration
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] réseau sémantique
[Termes IGN] site wiki
[Termes IGN] SPARQL
[Termes IGN] web sémantiqueRésumé : (auteur) Climate science has become more ambitious in recent years as global awareness about the environment has grown. To better understand climate, historical climate(e.g. archived meteorological variables such as temperature, wind, water, etc.) and climate-related data (e.g. geographical features and human activities) are widely used by today’s climate research to derive models for an explainable climate change and its effects. However, such data sources are often dispersed across a multitude of disconnected data silos on the Web. Moreover, there is a lack of advanced climate data platforms to enable multi-source heterogeneous climate data analysis, therefore, researchers must face a stern challenge in collecting and analyzing multi-source data. In this paper, we address this problem by proposing a climate knowledge graph for the integration of multiple climate data and other data sources into one service, leveraging Web technologies (e.g. HTTP) for multi-source climate data analysis. The proposed knowledge graph is primarily composed of data from the National Oceanic and Atmospheric Administration’s daily climate summaries, OpenStreetMap, and Wikidata, and it supports joint data queries on these widely used databases. This paper shows, with a use case in Ireland and the United Kingdom, how climate researchers could benefit from this platform as it allows them to easily integrate datasets from different domains and geographical locations. Numéro de notice : A2022-789 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2022.105215 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105215 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101897
in Computers & geosciences > vol 169 (December 2022) . - n° 105215[article]Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications / Wenwen Li in Computers, Environment and Urban Systems, vol 98 (December 2022)
![]()
[article]
Titre : Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications Type de document : Article/Communication Auteurs : Wenwen Li, Auteur ; Sizhe Wang, Auteur ; Sheng wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101884 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] base de données relationnelles
[Termes IGN] entrepôt de données
[Termes IGN] ontologie
[Termes IGN] RDF
[Termes IGN] référentiel sémantique
[Termes IGN] requête spatiale
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] stockage de données
[Termes IGN] test de performance
[Termes IGN] web sémantiqueRésumé : (auteur) Knowledge graph has become a cutting-edge technology for linking and integrating heterogeneous, cross-domain datasets to address critical scientific questions. As big data has become prevalent in today's scientific analysis, semantic data repositories that can store and manage large knowledge graph data have become critical in successfully deploying spatially explicit knowledge graph applications. This paper provides a comprehensive evaluation of the popular semantic data repositories and their computational performance in managing and providing semantic support for spatial queries. There are three types of semantic data repositories: (1) triple store solutions (RDF4j, Fuseki, GraphDB, Virtuoso), (2) property graph databases (Neo4j), and (3) an Ontology-Based Data Access (OBDA) approach (Ontop). Experiments were conducted to compare each repository's efficiency (e.g., query response time) in handling geometric, topological, and spatial-semantic related queries. The results show that Virtuoso achieves the overall best performance in both non-spatial and spatial-semantic queries. The OBDA solution, Ontop, has the second-best query performance in spatial and complex queries and the best storage efficiency, requiring the least data-to-RDF conversion efforts. Other triple store solutions suffer from various issues that cause performance bottlenecks in handling spatial queries, such as inefficient memory management and lack of proper query optimization. Numéro de notice : A2022-720 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101884 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101884 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101654
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101884[article]Semantic integration of OpenStreetMap and CityGML with formal concept analysis / Somayeh Ahmadian in Transactions in GIS, vol 26 n° 8 (December 2022)
![]()
[article]
Titre : Semantic integration of OpenStreetMap and CityGML with formal concept analysis Type de document : Article/Communication Auteurs : Somayeh Ahmadian, Auteur ; Parham Pahlavani, Auteur Année de publication : 2022 Article en page(s) : pp 3349 - 3373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] CityGML
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données localisées des bénévoles
[Termes IGN] information sémantique
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] réseau sémantiqueRésumé : (auteur) Volunteered geographic information (VGI) provides geometric and descriptive sources of geospatial data. VGI exchange, reuse, and integration are serious challenges due to the subjective contribution process, lack of organization, and redundancy. This study aims to enhance the quality of VGI semantic data by presenting a new approach to integrating and formalizing the VGI semantic knowledge using formal concept analysis. The proposed approach is assessed using the building tags in OpenStreetMap (OSM) and CityGML. The alignment process discovers the conceptual overlap between the categories of Amenity (Others), Office, and Man-Made in Map Features (OSM) and Business and Trade, Recreation, Sport, and Industry in AbstractBuilding (CityGML). The k-means clustering of the results illustrated that class, usage/function, address, wheelchair, and website/wikidata/wikipedia are significant attributes to describe building categories. Moreover, results showed that the analysis of frequent itemsets and cluster characteristics provides significant information about custom tags in OSM's editing tools. Numéro de notice : A2022-909 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13006 Date de publication en ligne : 02/12/2022 En ligne : https://doi.org/10.1111/tgis.13006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102347
in Transactions in GIS > vol 26 n° 8 (December 2022) . - pp 3349 - 3373[article]Identifying the key resources and missing elements to build a knowledge graph dedicated to spatial dataset search / Mehdi Zrhal in Procedia Computer Science, vol 207 (2022)
![]()
[article]
Titre : Identifying the key resources and missing elements to build a knowledge graph dedicated to spatial dataset search Type de document : Article/Communication Auteurs : Mehdi Zrhal , Auteur ; Bénédicte Bucher
, Auteur ; Fayçal Hamdi
, Auteur ; Marie-Dominique Van Damme
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Conférence : KES 2022, 26th International Conference Knowledge-Based and Intelligent Information & Engineering Systems 07/09/2022 09/09/2022 Vérone Italie OA proceedings Article en page(s) : pp 2911 - 2920 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] jeu de données localisées
[Termes IGN] recherche d'information géographique
[Termes IGN] réseau sémantiqueRésumé : (auteur) The number of spatial datasets available online has increased exponentially in recent years. Therefore, the search for spatial datasets is becoming a fourishing research field. The use of knowledge graphs has become rampant in search engines and in information retrieval. In this article, we identify the main resources needed and those missing to allow a knowledge graph to support spatial dataset search. We then apply our approach to the water domain in France by building a dedicated knowledge graph and describe an evaluation method to measure its effectiveness. Numéro de notice : A2022-695 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.procs.2022.09.349 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1016/j.procs.2022.09.349 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101910
in Procedia Computer Science > vol 207 (2022) . - pp 2911 - 2920[article]Geoscience Knowledge Graph (GeoKG): Development, construction and challenges / Xueying Zhang in Transactions in GIS, vol 26 n° 6 (September 2022)
![]()
[article]
Titre : Geoscience Knowledge Graph (GeoKG): Development, construction and challenges Type de document : Article/Communication Auteurs : Xueying Zhang, Auteur ; Yi Huang, Auteur ; Chunju Zhang, Auteur ; Peng Ye, Auteur Année de publication : 2022 Article en page(s) : pp 2480 - 2494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] corrélation
[Termes IGN] données localisées numériques
[Termes IGN] représentation des connaissances
[Termes IGN] réseau sémantiqueRésumé : (auteur) Big earth data is a cross-domain of geoscience and information science, which provides a novel perspective for solving geoscience problems. Most contemporary research is driven by data but neglect the potential value of knowledge. As a new scientific language in Geoscience, GeoKG is essential for understanding, representing, and mining geoscience knowledge, and can contribute to the integration of big earth data, geoscience knowledge, and geoscience models. However, research on GeoKG lack spatiotemporal perspectives in knowledge cognition, representation, acquisition and management. To this end, this article first outlines a cognitive mechanism from the human–machine double perspective and categorizes the characteristics and content of geoscience knowledge. To express evolution and complex natural rules, a knowledge representation framework is proposed through ‘state-process’ and ‘condition-result’ models. Aiming at multimodal data, a workflow is put forward to acquire knowledge from a small sample, a knowledge graph, a map, and a schematic diagram. Furthermore, we discuss the organization of GeoKG by improving existing data models, developing spatiotemporal correlation indexing and advancing knowledge graph completion. The concrete construction process of GeoKG is analyzed thoroughly in this study, which can support the synthetic analysis of big earth data, promote the development of knowledge engineering and provide a foundation for improving intelligent geoscience. Numéro de notice : A2022-699 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1111/tgis.12985 En ligne : https://doi.org/10.1111/tgis.12985 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102142
in Transactions in GIS > vol 26 n° 6 (September 2022) . - pp 2480 - 2494[article]Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
PermalinkNarrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
PermalinkGIS-KG: building a large-scale hierarchical knowledge graph for geographic information science / Jiaxin Du in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
PermalinkGraph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
PermalinkGraph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica, vol 26 n° 2 (April 2022)
PermalinkA knowledge representation model based on the geographic spatiotemporal process / Kun Zheng in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
PermalinkAccessing spatial knowledge networks with maps / Markus Jobst in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkGisGCN: a visual graph-based framework to match geographical areas through time / Margarita Khokhlova in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
PermalinkATONTE: towards a new methodology for seed ontology development from texts and experts / Helen Mair Rawsthorne (2022)
PermalinkPermalink