Descripteur
Termes IGN > informatique > intelligence artificielle > ingénierie des connaissances > représentation des connaissances > réseau sémantique
réseau sémantiqueSynonyme(s)graphe de connaissancesVoir aussi |
Documents disponibles dans cette catégorie (33)



Etendre la recherche sur niveau(x) vers le bas
Narrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Narrative cartography with knowledge graphs Type de document : Article/Communication Auteurs : Gengchen Mai, Auteur ; Weiming Huang, Auteur ; Ling Cai, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] ArcGIS
[Termes IGN] cartographie ancienne
[Termes IGN] cartographie par internet
[Termes IGN] données spatiotemporelles
[Termes IGN] géovisualisation
[Termes IGN] modèle d'ontologie
[Termes IGN] ontologie
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] système d'information géographique
[Termes IGN] web sémantiqueRésumé : (auteur) Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content (Map Content Module) and the geovisualization process (Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography. Numéro de notice : A2022-182 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-021-00097-4 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1007/s41651-021-00097-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99869
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022)[article]GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science / Jiaxin Du in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science Type de document : Article/Communication Auteurs : Jiaxin Du, Auteur ; Shaohua Wang, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 873 - 897 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] exploration de données
[Termes IGN] ingénierie des connaissances
[Termes IGN] ontologie
[Termes IGN] recherche d'information géographique
[Termes IGN] réseau sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) An organized knowledge base can facilitate the exploration of existing knowledge and the detection of emerging topics in a domain. Knowledge about and around Geographic Information Science and its associated system technologies (GIS) is complex, extensive and emerging rapidly. Taking the challenge, we built a GIS knowledge graph (GIS-KG) by (1) merging existing GIS bodies of knowledge to create a hierarchical ontology and then (2) applying deep-learning methods to map GIS publications to the ontology. We conducted several experiments on information retrieval to evaluate the novelty and effectiveness of the GIS-KG. Results showed the robust support of GIS-KG for knowledge search of existing GIS topics and potential to explore emerging research themes. Numéro de notice : A2022-341 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005795 Date de publication en ligne : 26/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005795 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100515
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 873 - 897[article]Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
![]()
[article]
Titre : Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection Type de document : Article/Communication Auteurs : David Alejandro Jimenez-Sierra, Auteur ; David Alfredo Quintero-Olaya, Auteur ; Juan Carlos Alvear-Muñoz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4410416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] détection de changement
[Termes IGN] graphe
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] Kappa de Cohen
[Termes IGN] lissage de données
[Termes IGN] processus gaussien
[Termes IGN] réseau sémantique
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] superpixelRésumé : (auteur) Graph-based methods are promising approaches for traditional and modern techniques in change detection (CD) applications. Nonetheless, some graph-based approaches omit the existence of useful priors that account for the structure of a scene, and the inter- and intra-relationships between the pixels are analyzed. To address this issue, in this article, we propose a framework for CD based on graph fusion and driven by graph signal smoothness representation. In addition to modifying the graph learning stage, in the proposed model, we apply a Gaussian mixture model for superpixel segmentation (GMMSP) as a downsampling module to reduce the computational cost required to learn the graph of the entire images. We carry out tests on 14 real cases of natural disasters, farming, and construction. The dataset contains homogeneous cases with multispectral (MS) and synthetic aperture radar (SAR) images, along with heterogeneous cases that include MS/SAR images. We compare our approach against probabilistic thresholding, unsupervised learning, deep learning, and graph-based methods. In terms of Cohen’s kappa coefficient, our proposed model based on graph signal smoothness representation outperformed state-of-the-art approaches in ten out of 14 datasets. Numéro de notice : A2022-379 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168126 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100643
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 4410416[article]Graph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica [en ligne], vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Graph neural network based model for multi-behavior session-based recommendation Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Ruoqian Zhang, Auteur ; Wei Chen, Auteur ; Junhua Fang, Auteur Année de publication : 2022 Article en page(s) : pp 429 - 447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] comportement
[Termes IGN] consommation
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] service fondé sur la positionMots-clés libres : session Résumé : (auteur) Multi-behavior session-based recommendation aims to predict the next item, such as a location-based service (LBS) or a product, to be interacted by a specific behavior type (e.g., buy or click) in a session involving multiple types of behaviors. State-of-the-art methods generally model multi-behavior dependencies in item-level, but ignore the potential of discovering useful patterns of multi-behavior transition through feature-level representation learning. Besides, sequential and non-sequential patterns should be properly fused in session modeling to capture dynamic interests within the session. To this end, this paper proposes a Graph Neural Network based Hybrid Model GNNH, which enables feature-level deeper representations of multi-behavior interaction sequences for session-based recommendation. Specifically, we first construct multi-relational item graph (MRIG) and feature graph (MRFG) based on session sequences. On top of the MRIG and MRFG, our model takes advantage of GNN to capture item and feature representations, such that global item-to-item and feature-to-feature relations are fully preserved. Afterwards, each multi-behavior session is modeled by a seamless fusion of interacted item and feature representations, where self-attention and mean-pooling are used to obtain sequential and non-sequential patterns simultaneously. Experiments on two real datasets show that the GNNH model significantly outperforms the state-of-the-art methods. Numéro de notice : A2022-326 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00439-w Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.1007/s10707-021-00439-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100489
in Geoinformatica [en ligne] > vol 26 n° 2 (April 2022) . - pp 429 - 447[article]A knowledge representation model based on the geographic spatiotemporal process / Kun Zheng in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : A knowledge representation model based on the geographic spatiotemporal process Type de document : Article/Communication Auteurs : Kun Zheng, Auteur ; Ming Hui Xie, Auteur ; Jin Biao Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 674 - 691 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] approche hiérarchique
[Termes IGN] ontologie
[Termes IGN] raisonnement spatiotemporel
[Termes IGN] représentation des connaissances
[Termes IGN] représentation du changement
[Termes IGN] représentation géographique
[Termes IGN] réseau sémantiqueRésumé : (auteur) Knowledge graphs (KGs) represent entities and relations as computable networks, which is of great value for discovering hidden knowledge and patterns. Geographic KGs mainly describe static facts and have difficulty representing changes, greatly limiting their application in geographic spatiotemporal processes. By analyzing the spatiotemporal features and evolution of geographic elements, this study presents the geographic evolutionary knowledge graph (GEKG). Its representation model has five core elements: time, geographic event (geo-event), geographic entity (geo-entity), activity and property, and defines six relations: logical, semantic, evolutionary and temporal relation, participation and inclusion. It establishes a hierarchical cubical model structure and each temporal layer extends vertically and horizontally starting with the earliest geo-event. Vertical expansion refers to the connection between different kinds of element, such as the participation relation between geo-entities and geo-events. Horizontal expansion indicates the association between the same kinds of element, such as the semantic relation between geo-entities. For different layers, the spatiotemporal differences of elements produce the evolutionary relation. Finally, the comparison of GEKG with Yet Another Great Ontology (YAGO) and Geographic Knowledge Graph (GeoKG) shows that GEKG has more advantages in representing geographic evolutionary knowledge, revealing the evolution mechanism of geographic elements and the evolutionary reasons. Numéro de notice : A2022-255 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1962527 Date de publication en ligne : 05/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1962527 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100228
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 674 - 691[article]Accessing spatial knowledge networks with maps / Markus Jobst in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkPermalinkReprésentation sémantique de données géospatiales au service de l'analyse de changements / Jordan Dorne (2021)
PermalinkPermalinkSpatial Linked Data in Europe: Report from Spatial Linked Data Session at Knowledge Graph in Action, October 6th, 2020, on-line conference / Bénédicte Bucher (February 2021)
PermalinkConciliating perspectives from mapping agencies and web of data on successful European SDIs: toward a European geographic knowledge graph / Bénédicte Bucher in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
PermalinkPermalinkPermalinkPermalinkComputing and querying strict, approximate, and metrically refined topological relations in linked geographic data / Blake Regalia in Transactions in GIS, vol 23 n° 3 (June 2019)
Permalink