Descripteur
Termes IGN > géomatique > données localisées > données localisées numériques > données maillées
données mailléesSynonyme(s)Mode raster ;mode maillé Données rastréesVoir aussi |
Documents disponibles dans cette catégorie (191)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A hexagon-based method for polygon generalization using morphological operators / Lu Wang in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : A hexagon-based method for polygon generalization using morphological operators Type de document : Article/Communication Auteurs : Lu Wang, Auteur ; Tinghua Ai, Auteur ; Dirk Burghardt, Auteur ; Yilang Shen, Auteur ; Min Yang, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données maillées
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] morphologie mathématique
[Termes IGN] polygone
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Numerous methods based on square rasters have been proposed for polygon generalization. However, these methods ignore the inconsistent distance measurement among neighborhoods of squares, which may result in an imbalanced generalization in different directions. As an alternative raster, a hexagon has consistent connectivity and isotropic neighborhoods. This study proposed a hexagon-based method for polygon generalization using morphological operators. First, we defined three generalization operators: aggregation, elimination, and line simplification, based on hexagonal morphological operations. We then used corrective operations with selection, skeleton, and exaggeration to detect, classify, and correct the unreasonably reduced narrow parts of the polygons. To assess the effectiveness of the proposed method, we conducted experiments comparing the hexagonal raster to square raster and vector data. Unlike vector-based methods in which various algorithms simplified either areal objects or exterior boundaries, the hexagon-based method performed both simplifications simultaneously. Compared to the square-based method, the results of the hexagon-based method were more balanced in all neighborhood directions, matched better with the original polygons, and had smoother simplified boundaries. Moreover, it performed with shorter running time than the square-based method, where the minimal time difference was less than 1 min, and the maximal time difference reached more than 50 mins. Numéro de notice : A2023-071 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2108036 Date de publication en ligne : 10/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2108036 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101387
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023)[article]Polyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
[article]
Titre : Polyline simplification based on the artificial neural network with constraints of generalization knowledge Type de document : Article/Communication Auteurs : Jiawei Du, Auteur ; Jichong Yin, Auteur ; Chengyi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 313 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] descripteur
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simplification de contour
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The present paper presents techniques for polyline simplification based on an artificial neural network within the constraints of generalization knowledge. The proposed method measures polyline shape characteristics that influence polyline simplification using abstracted descriptors and then introduces these descriptors into the artificial neural network as input properties. In total, 18 descriptors categorized into three types are presented in detail. In a second approach, map simplification principles are abstracted as controllers, imposed after the output layer of the trained artificial neural network to make the polyline simplification comply with these principles. This study worked with three controllers – a basic controller and two knowledge-based controllers. These descriptors and controllers abstracted from generalization knowledge were tested in experiments to determine their efficacy in polyline simplification based on the artificial neural network. The experimental results show that the utilization of abstracted descriptors and controllers can constrain the artificial neural network-based polyline simplification according to polyline shape characteristics and simplification principles. Numéro de notice : A2022-479 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2021.2013944 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2013944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100885
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 313 - 337[article]
Titre : AlpineBends – A benchmark for deep learning-based generalisation Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Editeur : International Cartographic Association ICA - Association cartographique internationale ACI Année de publication : 2022 Collection : Abstracts of the ICA num. 4 Projets : 1-Pas de projet / Conférence : ICA 2021, 24th ICA Workshop on Map Generalisation and Multiple Representation 13/12/2021 13/12/2021 Florence Italie OA Proceedings Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] données maillées
[Termes IGN] objet géographique
[Termes IGN] test de performance
[Vedettes matières IGN] GénéralisationRésumé : (auteur) [début] Raster-based map generalization is nowadays anecdotal, as most generalization operations are performed using vector data. Vectors describe the shape of each object in the map using a set of coordinates; thus, the object delimitation is directly accessible, and the topology and distance-based relations are easy to compute. On the contrary, rasters represent a map as an image, a grid of pixel covers the target area, and each pixel is characterised by a value. This representation does not explicitly model the boundary/shape of geographic objects and the relations between them. However, the emergence of the image-based deep learning techniques has shown an ability to process images of geographic information. The question of their adaptation for map generalization is a trendy subject: road (Courtial et al. 2020), building (Feng et al. 2019) and coastline (Du et al. 2021) generalization have been explored in recent years. Common methods for evaluating these techniques seems to be necessary for the comparison and development of this field. Numéro de notice : C2021-067 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/ica-abs-4-1-2022 Date de publication en ligne : 14/01/2022 En ligne : https://doi.org/10.5194/ica-abs-4-1-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99535 Aerial and UAV images for photogrammetric analysis of Belvedere Glacier evolution in the period 1977–2019 / Carlo Lapige De Gaetani in Remote sensing, vol 13 n° 18 (September-2 2021)
[article]
Titre : Aerial and UAV images for photogrammetric analysis of Belvedere Glacier evolution in the period 1977–2019 Type de document : Article/Communication Auteurs : Carlo Lapige De Gaetani, Auteur ; Francesco Loli, Auteur ; Livio Pinto, Auteur Année de publication : 2021 Article en page(s) : n° 3787 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] données maillées
[Termes IGN] glacier
[Termes IGN] glaciologie
[Termes IGN] historique des données
[Termes IGN] image aérienne
[Termes IGN] image captée par drone
[Termes IGN] masque
[Termes IGN] modèle numérique de surface
[Termes IGN] Piémont (Italie)
[Termes IGN] point d'appui
[Termes IGN] restitution analogique
[Termes IGN] structure-from-motionRésumé : (auteur) Alpine glaciers are strongly suffering the consequences of the temperature rising and monitoring them over long periods is of particular interest for climate change tracking. A wide range of techniques can be successfully applied to survey and monitor glaciers with different spatial and temporal resolutions. However, going back in time to retrace the evolution of a glacier is still a challenging task. Historical aerial images, e.g., those acquired for regional cartographic purposes, are extremely valuable resources for studying the evolution and movement of a glacier in the past. This work analyzed the evolution of the Belvedere Glacier by means of structure from motion techniques applied to digitalized historical aerial images combined with more recent digital surveys, either from aerial platforms or UAVs. This allowed the monitoring of an Alpine glacier with high resolution and geometrical accuracy over a long span of time, covering the period 1977–2019. In this context, digital surface models of the area at different epochs were computed and jointly analyzed, retrieving the morphological dynamics of the Belvedere Glacier. The integration of datasets dating back to earlier times with those referring to surveys carried out with more modern technologies exploits at its full potential the information that at first glance could be thought obsolete, proving how historical photogrammetric datasets are a remarkable heritage for glaciological studies. Numéro de notice : A2021-753 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13183787 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.3390/rs13183787 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98745
in Remote sensing > vol 13 n° 18 (September-2 2021) . - n° 3787[article]A new approach for the development of grid models calculating tropospheric key parameters over China / Ge Zhu in Remote sensing, vol 13 n° 17 (September-1 2021)
[article]
Titre : A new approach for the development of grid models calculating tropospheric key parameters over China Type de document : Article/Communication Auteurs : Ge Zhu, Auteur ; Liangke Huang, Auteur ; Lilong Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 3546 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Chine
[Termes IGN] données maillées
[Termes IGN] données météorologiques
[Termes IGN] MERRA
[Termes IGN] positionnement par GNSS
[Termes IGN] propagation troposphérique
[Termes IGN] retard troposphérique
[Termes IGN] série temporelle
[Termes IGN] teneur en vapeur d'eauRésumé : (auteur) Pressure, water vapor pressure, temperature, and weighted mean temperature (Tm) are tropospheric parameters that play an important role in high-precision global navigation satellite system navigation (GNSS). As accurate tropospheric parameters are obligatory in GNSS navigation and GNSS water vapor detection, high-precision modeling of tropospheric parameters has gained widespread attention in recent years. A new approach is introduced to develop an empirical tropospheric delay model named the China Tropospheric (CTrop) model, providing meteorological parameters based on the sliding window algorithm. The radiosonde data in 2017 are treated as reference values to validate the performance of the CTrop model, which is compared to the canonical Global Pressure and Temperature 3 (GPT3) model. The accuracy of the CTrop model in regards to pressure, water vapor pressure, temperature, and weighted mean temperature are 5.51 hPa, 2.60 hPa, 3.09 K, and 3.35 K, respectively, achieving an improvement of 6%, 9%, 10%, and 13%, respectively, when compared to the GPT3 model. Moreover, three different resolutions of the CTrop model based on the sliding window algorithm are also developed to reduce the amount of gridded data provided to the users, as well as to speed up the troposphere delay computation process, for which users can access model parameters of different resolutions for their requirements. With better accuracy of estimating the tropospheric parameters than that of the GPT3 model, the CTrop model is recommended to improve the performance of GNSS positioning and navigation. Numéro de notice : A2021-688 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs13173546 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.3390/rs13173546 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98423
in Remote sensing > vol 13 n° 17 (September-1 2021) . - n° 3546[article]Utiliser les données maillées sous QGIS / Anonyme in Géomatique expert, n° 134 (avril 2021)PermalinkCombining deep learning and mathematical morphology for historical map segmentation / Yizi Chen (2021)PermalinkGEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset / Polina Lemenkova in Geodesy and cartography, vol 46 n° 3 (October 2020)PermalinkEstimating and interpreting fine-scale gridded population using random forest regression and multisource data / Yun Zhou in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)PermalinkConstraint based evaluation of generalized images generated by deep learning / Azelle Courtial (2020)PermalinkUtilisation de PostGIS raster / Anonyme in Géomatique expert, n° 132-133 (janvier - septembre 2020)PermalinkChamps et objets pour mieux représenter les phénomènes dans leur contexte géographique / Anne Ruas in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)PermalinkA spatiotemporal calculus for reasoning about land-use trajectories / Adeline Marinho Maciel in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)PermalinkLes systèmes d'information géographique / Christina Aschan-Leygonie (2019)PermalinkConvolutional neural network for traffic signal inference based on GPS traces / Yann Méneroux (2018)Permalink