Descripteur
Termes IGN > géomatique > base de données localisées > jeu de données localisées
jeu de données localiséesVoir aussi |
Documents disponibles dans cette catégorie (100)



Etendre la recherche sur niveau(x) vers le bas
Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/05/2022])
![]()
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/05/2022] . - pp 1225 - 1236[article]HiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : HiPerMovelets: high-performance movelet extraction for trajectory classification Type de document : Article/Communication Auteurs : Tarlis Tortelli Portela, Auteur ; Jonata Tyska Carvalho, Auteur ; Vania Bogorny, Auteur Année de publication : 2022 Article en page(s) : pp 1012 - 1036 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification
[Termes IGN] exploration de données géographiques
[Termes IGN] jeu de données localisées
[Termes IGN] trace numérique
[Termes IGN] trajet (mobilité)Résumé : (auteur) In the last decade, trajectory classification has received significant attention. The vast amount of data generated on social media, the use of sensor networks, IOT devices and other Internet-enabled sources allowed the semantic enrichment of mobility data, making the classification task more challenging. Existing trajectory classification methods have mainly considered space, time and numerical data, ignoring the semantic dimensions. Only recently proposed methods as Movelets and MASTERMovelets can handle all types of dimensions. MASTERMovelets is the only method that automatically discovers the best dimension combination and subtrajectory size for trajectory classification. However, although it outperformed the state-of-the-art in terms of accuracy, MASTERMovelets is computationally expensive and results in a high dimensionality problem, which makes it unfeasible for most real trajectory datasets that contain a big volume of data. To overcome this problem and enable the application of the movelets approach on large datasets, in this paper we propose a new high-performance method for extracting movelets and classifying trajectories, called HiPerMovelets (High-performance Movelets). Experimental results show that HiPerMovelets is 10 times faster than MASTERMovelets, reduces the high-dimensionality problem, is more scalable, and presents a high classification accuracy in all evaluated datasets with both raw and semantic trajectories. Numéro de notice : A2022-332 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2021.2018593 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1080/13658816.2021.2018593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100608
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 1012 - 1036[article]Évaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine / Maxime Mérizette in XYZ, n° 170 (mars 2022)
[article]
Titre : Évaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine Type de document : Article/Communication Auteurs : Maxime Mérizette, Auteur Année de publication : 2022 Article en page(s) : pp 61 - 65 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] jeu de données localisées
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (Auteur) Les scanners laser terrestres permettent d’acquérir beaucoup de données tout en présentant une rapidité et une facilité d’acquisition. Mais ceci est terni par le manque d’automatisation des traitements de nuages de points. La segmentation de nuage de points, consistant à extraire les éléments constitutifs d’un nuage, pâtit notamment de ce manque. Ce travail de fin d’études d’ingénieur, mené chez Quarta, se concentre sur les apports de l’apprentissage profond pour la réalisation d’une segmentation de nuage de points. Elle se propose de lister les différentes méthodes d’apprentissage profond permettant de travailler sur les nuages de points et teste différents algorithmes permettant de traiter les nuages de points volumineux. Numéro de notice : A2022-226 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100192
in XYZ > n° 170 (mars 2022) . - pp 61 - 65[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 SL Revue Centre de documentation Revues en salle Disponible 112-2022012 SL Revue Centre de documentation Revues en salle Disponible A method to produce metadata describing and assessing the quality of spatial landmark datasets in mountain area / Marie-Dominique Van Damme (2022)
![]()
Titre : A method to produce metadata describing and assessing the quality of spatial landmark datasets in mountain area Type de document : Article/Communication Auteurs : Marie-Dominique Van Damme , Auteur ; Ana-Maria Olteanu-Raimond
, Auteur
Editeur : Göttingen : Copernicus publications Année de publication : 2022 Conférence : AGILE 2022, 25th international AGILE Conference on Geographic Information Science, Artificial intelligence in the service of geospatial technologies 14/06/2022 17/06/2022 Vilnius Lithuanie OA Proceedings Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] Alpes (France)
[Termes IGN] appariement de données localisées
[Termes IGN] données localisées
[Termes IGN] données ouvertes
[Termes IGN] jeu de données localisées
[Termes IGN] loisir
[Termes IGN] métadonnées géographiques
[Termes IGN] montagne
[Termes IGN] norme ISO
[Termes IGN] ontologie
[Termes IGN] qualité des donnéesRésumé : (auteur) The increase of recreational activities in the mountains and a growing amount of websites proposing geographic data, offer new opportunities for societal needs such as mountain rescue, biodiversity monitoring, outdoor activities. However, the main issue with the websites data is the lack of metadata that minimizes its reuse outside the community that produced the data. The goal of this paper is to study and generate quality and descriptive metadata using ISO standards. To this end, we propose a method based on a common vocabulary such as an ontology and a data matching process. The first one allows to associate to each type of feature from an available geographic dataset an ontology class that will facilitate data matching, reproducibility of results and minimize semantic heterogeneity. The second one allows to define matching links between features representing the same entity in the real world and compute quality indicators based on the validated links. Finally, at the end of this process, we are able to generate descriptive and quality metadata. By following ISO standards and using the QualityML dictionary for measures, the metadata is serialized to XML and can finally be published as open source. Our approach was applied to five different landmark datasets in the French Alps region. New insights were acquired regarding positional accuracy and semantic granularity. Numéro de notice : C2022-027 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-3-17-2022 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.5194/agile-giss-3-17-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100928 PermalinkThree-dimensional reconstruction of single input image based on point cloud / Yu Hou in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)
PermalinkQuality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
PermalinkAn anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkPermalinkAssessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin / Luis Felipe Galizia in Natural Hazards and Earth System Sciences, vol 21 n° 1 (January 2021)
PermalinkPermalinkFrom point clouds to high-fidelity models - advanced methods for image-based 3D reconstruction / Audrey Richard (2021)
PermalinkGeometric and semantic joint approach for the reconstruction of digital models of buildings / Pierre-Alain Langlois (2021)
PermalinkPermalink