Descripteur
Termes descripteurs IGN > géomatique > données localisées > données localisées numériques > données localisées 3D
données localisées 3DVoir aussi |


Etendre la recherche sur niveau(x) vers le bas
3D change detection using adaptive thresholds based on local point cloud density / Dan Liu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
![]()
[article]
Titre : 3D change detection using adaptive thresholds based on local point cloud density Type de document : Article/Communication Auteurs : Dan Liu, Auteur ; Dajun Li, Auteur ; Meizhen Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] MNS lidar
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] seuillage de pointsRésumé : (auteur) In recent years, because of highly developed LiDAR (Light Detection and Ranging) technologies, there has been increasing demand for 3D change detection in urban monitoring, urban model updating, and disaster assessment. In order to improve the effectiveness of 3D change detection based on point clouds, an approach for 3D change detection using point-based comparison is presented in this paper. To avoid density variation in point clouds, adaptive thresholds are calculated through the k-neighboring average distance and the local point cloud density. A series of experiments for quantitative evaluation is performed. In the experiments, the influencing factors including threshold, registration error, and neighboring number of 3D change detection are discussed and analyzed. The results of the experiments demonstrate that the approach using adaptive thresholds based on local point cloud density are effective and suitable. Numéro de notice : A2021-231 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030127 date de publication en ligne : 02/03/2021 En ligne : https://doi.org/10.3390/ijgi10030127 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97222
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 127[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] arc
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]Building extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Building extraction from Lidar data using statistical methods Type de document : Article/Communication Auteurs : Haval Abdul-Jabbar Sadeq, Auteur Année de publication : 2021 Article en page(s) : pp 33 - 42 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) In this article, a straightforward, intuitive method for lidar data classification and building extraction, based on statistical analysis, is presented. The classification of the point cloud into ground and nonground is begun by individually testing each point within the point cloud using the statistical mean height. In this operation, various window sizes are specified, and the mean is obtained at each size. The points that are above the mean are saved and divided by the number of windows to obtain the proportion. Points are considered non-ground if their proportion is higher than the assigned threshold, and otherwise ground. An algorithm for classifying the obtained nonground point cloud into buildings and trees is also illustrated in this article. First the nonground points are labeled, then each label is tested individually. The process begins with segmenting each label. Then comes testing of whether each segment of points can be fitted within a specific plane. The label of the point cloud is considered a building if the number of segments considered as planes is larger than those considered as nonplanes; otherwise it is classified as a tree. Numéro de notice : A2021-055 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.33 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96760
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 33 - 42[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021011 SL Revue Centre de documentation Revues en salle Disponible Georeferencing with self-calibration for airborne full-waveform Lidar data using digital elevation model / Qinghua Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Georeferencing with self-calibration for airborne full-waveform Lidar data using digital elevation model Type de document : Article/Communication Auteurs : Qinghua Li, Auteur ; Jie Shan, Auteur Année de publication : 2021 Article en page(s) : pp 43 - 52 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] autoétalonnage
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étalonnage de capteur (imagerie)
[Termes descripteurs IGN] forme d'onde pleine
[Termes descripteurs IGN] géoréférencement
[Termes descripteurs IGN] modèle géométrique de prise de vue
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] point d'appui
[Termes descripteurs IGN] synchronisationRésumé : (Auteur) Precise georeferencing of airborne full-waveform lidar is a complex process. On one hand, no ground control points are visible due to heavy canopy. While on the other hand, precise georeferencing relies on ground control. As an alternative, we propose to use an available digital elevation model (DEM ) as control. The mathematical framework minimizes the difference between the lidar DEM and the reference DEM. Our solution consists of two steps: initial optimization to find reliable ground points through iterative filtering and georeferencing, and fine optimization to achieve precise georeferencing and lidar system calibration. Through this approach, the wave-form-derived DEM can best fit the reference DEM, with a mean of 0.937 m and standard deviation of 0.792 m, while the time-synchronization offset and boresight angles are simultaneously determined, i.e., self-calibrated. This development provides a novel georeferencing approach with self-calibration for lidar data without using conventional ground control points. Numéro de notice : A2021-056 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.1.43 date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.43 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96766
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 43 - 52[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021011 SL Revue Centre de documentation Revues en salle Disponible Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds / Yuan Li in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Relation-constrained 3D reconstruction of buildings in metropolitan areas from photogrammetric point clouds Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Wu Bo, Auteur Année de publication : 2021 Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] CityGML
[Termes descripteurs IGN] contrainte géométrique
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] géomètrie algorithmique
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] reconstruction 3D du bâti
[Termes descripteurs IGN] relation topologique
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] ville intelligenteRésumé : (auteur) The complexity and variety of buildings and the defects of point cloud data are the main challenges faced by 3D urban reconstruction from point clouds, especially in metropolitan areas. In this paper, we developed a method that embeds multiple relations into a procedural modelling process for the automatic 3D reconstruction of buildings from photogrammetric point clouds. First, a hybrid tree of constructive solid geometry and boundary representation (CSG-BRep) was built to decompose the building bounding space into multiple polyhedral cells based on geometric-relation constraints. The cells that approximate the shapes of buildings were then selected based on topological-relation constraints and geometric building models were generated using a reconstructing CSG-BRep tree. Finally, different parts of buildings were retrieved from the CSG-BRep trees, and specific surface types were recognized to convert the building models into the City Geography Markup Language (CityGML) format. The point clouds of 105 buildings in a metropolitan area in Hong Kong were used to evaluate the performance of the proposed method. Compared with two existing methods, the proposed method performed the best in terms of robustness, regularity, and topological correctness. The CityGML building models enriched with semantic information were also compared with the manually digitized ground truth, and the high level of consistency between the results suggested that the produced models will be useful in smart city applications. Numéro de notice : A2021-078 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010129 date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.3390/rs13010129 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96820
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 13[article]Remote sensing in urban planning: Contributions towards ecologically sound policies? / Thilo Wellmann in Landscape and Urban Planning, vol 204 (December 2020)
PermalinkLes stations virtuelles au service de la cartographie mobile / Mathieu Regul in XYZ, n° 165 (décembre 2020)
PermalinkThe utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland / Ranjith Gopalakrishnan in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkActive and incremental learning for semantic ALS point cloud segmentation / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkEffects of radiometric correction on cover type and spatial resolution for modeling plot level forest attributes using multispectral airborne LiDAR data / Wai Yeung Yan in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkTopographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkHierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkA LiDAR aiding ambiguity resolution method using fuzzy one-to-many feature matching / Chuang Qian in Journal of geodesy, vol 94 n° 10 (October 2020)
PermalinkSee the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning / Zhouxin Xi in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkTowards an optimization of sample plot size and scanner position layout for terrestrial laser scanning in multi-scan mode / Tim Ritter in Forests, vol 11 n° 10 (October 2020)
Permalink