Descripteur
Documents disponibles dans cette catégorie (1392)


Etendre la recherche sur niveau(x) vers le bas
Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models / Asli Ozdarici-Ok in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models Type de document : Article/Communication Auteurs : Asli Ozdarici-Ok, Auteur ; Ali Ozgun Ok, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinus pinea
[Termes IGN] semis de points
[Termes IGN] TurquieRésumé : (auteur) Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle (UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information. Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner (HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the proposed methodology, which uses a single DSM as an input, secures overall pixel-based and object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context. Numéro de notice : A2022-620 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2090864 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2090864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101364
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Analyse des performances de levers LiDAR via l’iPad Pro en vue de la réalisation de plans d’intérieurs et de maquettes numériques de bâtiments / Pauline Chardon in XYZ, n° 174 (mars 2023)
[article]
Titre : Analyse des performances de levers LiDAR via l’iPad Pro en vue de la réalisation de plans d’intérieurs et de maquettes numériques de bâtiments Type de document : Article/Communication Auteurs : Pauline Chardon, Auteur Année de publication : 2023 Article en page(s) : pp 39 - 43 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] lidar mobile
[Termes IGN] maquette numérique
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] téléphone intelligentRésumé : (Auteur) Depuis 2020, Apple intègre désormais un capteur LiDAR dans ses smartphones et tablettes les plus récents. À l’origine dédiée à la réalité augmentée, son utilisation pour les relevés métriques présente aujourd’hui un intérêt croissant. Devant ce constat, la société FUTURMAP a fait le choix de mener une étude approfondie sur le sujet, en collaboration avec un grand groupe spécialisé dans le diagnostic immobilier. L’objectif de cette étude est donc de mettre en place une nouvelle méthode d’acquisition basée sur les technologies LiDAR mobiles, dans le but d’établir un plan d’intérieur ou une maquette numérique 3D. Dans cette étude, nous avons ainsi approfondi la connaissance de ce système de numérisation afin de déterminer un processus de captation fiable des données. Plusieurs éléments ont été étudiés à la suite d’une série de tests afin de déterminer les limites et les contraintes de ce nouveau dispositif. Numéro de notice : A2023-170 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102851
in XYZ > n° 174 (mars 2023) . - pp 39 - 43[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 SL Revue Centre de documentation Revues en salle Disponible Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction / Shuo Shi in ISPRS International journal of geo-information, vol 12 n° 3 (March 2023)
![]()
[article]
Titre : Point cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Xingtao Tang, Auteur ; Bowen Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse spectrale
[Termes IGN] arbre urbain
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Houston (Texas)
[Termes IGN] interpolation
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Lidar can effectively obtain three-dimensional information on ground objects. In recent years, lidar has developed rapidly from single-wavelength to multispectral hyperspectral imaging. The multispectral airborne lidar Optech Titan is the first commercial system that can collect point cloud data on 1550, 1064, and 532 nm channels. This study proposes a method of point cloud segmentation in the preprocessed intensity interpolation process to solve the problem of inaccurate intensity at the boundary during point cloud interpolation. The entire experiment consists of three steps. First, a multispectral lidar point cloud is obtained using point cloud segmentation and intensity interpolation; the spatial dimension advantage of the multispectral point cloud is used to improve the accuracy of spectral information interpolation. Second, point clouds are divided into eight categories by constructing geometric information, spectral reflectance information, and spectral characteristics. Accuracy evaluation and contribution analysis are also conducted through point cloud truth value and classification results. Lastly, the spatial dimension information is enhanced by point cloud drop sampling, the method is used to solve the error caused by airborne scanning and single-tree extraction of urban trees. Classification results showed that point cloud segmentation before intensity interpolation can effectively improve the interpolation and classification accuracies. The total classification accuracy of the data is improved by 3.7%. Compared with the extraction result (377) of single wood without subsampling treatment, the result of the urban tree extraction proved the effectiveness of the proposed method with a subsampling algorithm in improving the accuracy. Accordingly, the problem of over-segmentation is solved, and the final single-wood extraction result (329) is markedly consistent with the real situation of the region. Numéro de notice : A2023-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12030090 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.3390/ijgi12030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102852
in ISPRS International journal of geo-information > vol 12 n° 3 (March 2023) . - n° 90[article]Programme LiDAR HD : vers une nouvelle cartographie 3D du territoire / Terry Moreau in XYZ, n° 174 (mars 2023)
[article]
Titre : Programme LiDAR HD : vers une nouvelle cartographie 3D du territoire Type de document : Article/Communication Auteurs : Terry Moreau, Auteur ; Hélène Buissart, Auteur ; Arnaud Allgeyer, Auteur ; Sofiane Kriat , Auteur ; Pierre-Yves Decavele, Auteur ; Romuald Dore, Auteur ; Gabrielle Roy, Auteur
Année de publication : 2023 Article en page(s) : pp 45 - 49 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] acquisition de données
[Termes IGN] cartographie 3D
[Termes IGN] diffusion de données
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] France métropolitaine
[Termes IGN] QGIS
[Termes IGN] semis de points
[Termes IGN] système d'information géographique
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) Le programme LiDAR HD est d’une ampleur inédite et porte un objectif ambitieux : acquérir des données LiDAR haute densité (HD) sur l’ensemble du territoire métropolitain et ultramarin (hors Guyane) pour en proposer la description 3D la plus fine jamais établie à l’échelle France entière. L’IGN coordonne ce programme et s’emploie à soutenir tous les usages de ce géocommun en devenir. Numéro de notice : A2023-171 Affiliation des auteurs : IGN (2020- ) Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102856
in XYZ > n° 174 (mars 2023) . - pp 45 - 49[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 SL Revue Centre de documentation Revues en salle Disponible Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
![]()
[article]
Titre : Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Sébastien Lefèvre, Auteur ; Thomas Corpetti, Auteur Année de publication : 2023 Article en page(s) : pp 274 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] réseau neuronal siamois
[Termes IGN] semis de points
[Termes IGN] végétation
[Termes IGN] zone urbaineRésumé : (auteur) This study is concerned with urban change detection and categorization in point clouds. In such situations, objects are mainly characterized by their vertical axis, and the use of native 3D data such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant loss of information implied by any rasterization process. Yet, for obvious practical reasons, most existing studies only focus on 2D images for change detection purpose. In this paper, we propose a method capable of performing change detection directly within 3D data. Despite recent deep learning developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization in a single step. Experimental results are conducted on synthetic and real data of various kinds (LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us to greatly reduce (more than 3,000
) the annotations required on real data. This is a highly significant result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets, respectively. The code is available at the following link: https://github.com/IdeGelis/torch-points3d-SiameseKPConv.Numéro de notice : A2023-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.02.001 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.02.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102805
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 274 - 291[article]The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
PermalinkStochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data / Parvez Rana in Landscape and Urban Planning, vol 230 (February 2023)
PermalinkTopology-based individual tree segmentation for automated processing of terrestrial laser scanning point clouds / Xin Xu in International journal of applied Earth observation and geoinformation, vol 116 (February 2023)
Permalink3D building metrics for urban morphology / Anna Labetski in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
PermalinkDecision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
PermalinkEstimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
PermalinkExploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
PermalinkA geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
PermalinkA hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
PermalinkHow to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
Permalink