Descripteur
Termes IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte routière
carte routièreVoir aussi |
Documents disponibles dans cette catégorie (48)



Etendre la recherche sur niveau(x) vers le bas
Deriving map images of generalised mountain roads with generative adversarial networks / Azelle Courtial in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
![]()
[article]
Titre : Deriving map images of generalised mountain roads with generative adversarial networks Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2023 Article en page(s) : pp 499 - 528 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage non-dirigé
[Termes IGN] carte routière
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] montagne
[Termes IGN] réseau antagoniste génératif
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals. Numéro de notice : A2023-073 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2123488 Date de publication en ligne : 20/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2123488 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101901
in International journal of geographical information science IJGIS > vol 37 n° 3 (March 2023) . - pp 499 - 528[article]Design and construction of a colourblind-friendly Surabaya city angkot route map prototype / Arzakhy Indhira Pramesti in Cartographica, vol 57 n° 3 (September 2022)
![]()
[article]
Titre : Design and construction of a colourblind-friendly Surabaya city angkot route map prototype Type de document : Article/Communication Auteurs : Arzakhy Indhira Pramesti, Auteur ; Noorhadi Rahardjo, Auteur Année de publication : 2022 Article en page(s) : pp 195 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Rédaction cartographique
[Termes IGN] carte routière
[Termes IGN] chromatopsie
[Termes IGN] conception cartographique
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] daltonisme
[Termes IGN] Indonésie
[Termes IGN] itinéraire
[Termes IGN] lisibilité perceptive
[Termes IGN] prototype
[Termes IGN] transport collectifRésumé : (auteur) Angkot is the most often found public transportation in Surabaya City. However, there is no angkot routes map, and the officially published route information is textual, thus hard to get the transit information quickly. Meanwhile, people with colour vision impairment have a different perception of colour compared to people with normal vision. It can affect them in making decisions when reading a map. The purpose of this study is to design a colourblind-friendly Surabaya City angkot route map prototype and to conduct a cartographic evaluation of the map by considering the colour vision impairment factor. The map was created using ArcGIS and CorelDRAW then checked by using several software packages to ensure that the colours are colourblind-friendly then tested on people with normal vision and people with colour vision impairment. Fifteen out of 15 respondents with normal vision and 11 out of 11 respondents with colour vision impairment could distinguish the colours of the route. All respondents mentioned that symbols and some texts were too small. It shows that the colours on the map can accommodate both groups, but they have difficulty reading the route map because the size of the symbols and the text is too small. Numéro de notice : A2022-850 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3138/cart-2021-0005 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.3138/cart-2021-0005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102088
in Cartographica > vol 57 n° 3 (September 2022) . - pp 195 - 212[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2022031 RAB Revue Centre de documentation En réserve L003 Disponible Towards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Towards the automated large-scale reconstruction of past road networks from historical maps Type de document : Article/Communication Auteurs : Johannes H. Uhl, Auteur ; Stefan Leyk, Auteur ; Yao-Yi Chiang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] analyse de sensibilité
[Termes IGN] carte ancienne
[Termes IGN] carte routière
[Termes IGN] carte topographique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données multitemporelles
[Termes IGN] Etats-Unis
[Termes IGN] extraction du réseau routier
[Termes IGN] histoire
[Termes IGN] paysage
[Termes IGN] réseau routier
[Termes IGN] transport routier
[Termes IGN] urbanisationRésumé : (auteur) Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi-temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map series to reconstruct past road networks, by integrating abundant, contemporary road network data and color information extracted from historical maps. Specifically, our method uses contemporary road segments as analytical units and extracts historical roads by inferring their existence in historical map series based on image processing and clustering techniques. We tested our method on over 300,000 road segments representing more than 50,000 km of the road network in the United States, extending across three study areas that cover 42 historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and showed that the extracted road network statistics are highly plausible over time, i.e., following general growth patterns. We demonstrated that contemporary geospatial data integrated with information extracted from historical map series open up new avenues for the quantitative analysis of long-term urbanization processes and landscape changes far beyond the era of operational remote sensing and digital cartography. Numéro de notice : A2022-947 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101794 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100182
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101794[article]Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction Type de document : Article/Communication Auteurs : Jincai Huang, Auteur ; Yunfei Zhang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 735 - 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Vedettes matières IGN] Géomatique
[Termes IGN] base de données routières
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] intégration de données
[Termes IGN] navigation automobile
[Termes IGN] vitesse
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The road map is a fundamental part of a spatial data infrastructure (SDI), and is widely applied in navigation, smart transportation, and mobile location services. Recently, with the ubiquity of positioning devices, crowdsourced trajectories have become a significant data resource for road map construction and updating. However, existing trajectory-based methods mainly place emphasis on extracting road geometry features and may ignore continuous updating of road semantic information. Hence, we propose a divide-and-conquer method to construct a spatial-semantic road map by incorporating multiple data sources (e.g., crowdsourced trajectories and geo-tagged data). The proposed method divides road map construction into two sub-tasks, road structure reconstruction and road attributes inference. The road structure reconstruction process starts to partition raw trajectory data into different cliques of roadways and road intersections, and then extracts various targeted road structures by analyzing the turning modes in different trajectory cliques. The road attributes inference process aims to infer three pieces of crucial semantic information about road speeds, turning rules, and road names from crowdsourced trajectories and geo-tagged data. The case studies in Wuhan were examined to illustrate that the proposed method can construct a routable road map with enhanced geometric structures and rich semantic information, providing a beneficial data solution for car navigation and SDI update. Numéro de notice : A2022-364 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12879 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1111/tgis.12879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100583
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 735 - 754[article]Road network generalization method constrained by residential areas / Zheng Lyu in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
![]()
[article]
Titre : Road network generalization method constrained by residential areas Type de document : Article/Communication Auteurs : Zheng Lyu, Auteur ; Qun Sun, Auteur ; Jingzhen Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 159 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] 1:50.000
[Termes IGN] carte routière
[Termes IGN] connexité (topologie)
[Termes IGN] corrélation
[Termes IGN] programmation par contraintes
[Termes IGN] quartier
[Termes IGN] réseau routier
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone (aménagement du territoire)
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Residential areas and road networks have a strong geographical correlation. The development of a single geographical feature could destroy the geographical correlation. It is necessary to establish collaborative generalization models suitable for multiple features. However, existing road network generalization methods for mapping purposes do not fully consider residential areas. Compared with road networks, residential areas have a higher priority in cartographic generalization. In this regard, this study proposes a road network generalization method constrained by residential areas. First, the roads and settlements obtained from clustering residential areas were classified. Next, the importance of the settlements was evaluated and certain settlements were selected as the control features. Subsequently, a geographical network with the settlements as the nodes was built, and the traffic paths between adjacent settlements were searched. Finally, redundant paths between the settlements were simplified, and the visual continuity and topological connectivity were checked. The data of a 1:50,000 road network and residential areas were used as the experimental data. The experimental results demonstrated that the proposed method preserves the overall structure and relative density characteristics of the road network, as well as the geographical correlation between the road network and residential areas. Numéro de notice : A2022-184 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11030159 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.3390/ijgi11030159 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99890
in ISPRS International journal of geo-information > vol 11 n° 3 (March 2022) . - n° 159[article] PermalinkRoad-network-based fast geolocalization / Yongfei Li in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkExtraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkRoad network simplification for location-based services / Abdeltawab M. Hendawi in Geoinformatica, vol 24 n° 4 (October 2020)
PermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
![]()
PermalinkApplication of machine learning techniques for evidential 3D perception, in the context of autonomous driving / Edouard Capellier (2020)
PermalinkConstraint based evaluation of generalized images generated by deep learning / Azelle Courtial (2020)
PermalinkThe effects of visual realism, spatial abilities, and competition on performance in map-based route learning in men / Arzu Çöltekin in Cartography and Geographic Information Science, Vol 45 n° 4 (July 2018)
PermalinkDetection and localization of traffic signals with GPS floating car data and Random Forest / Yann Méneroux (2018)
![]()
PermalinkParcourir et marquer le temps : premiers éléments pour une étude diachronique appliquée à la cartographie d'itinéraire / Quentin Morcette in Cartes & Géomatique, n° 225 (septembre 2015)
Permalink