Descripteur
Documents disponibles dans cette catégorie (87)



Etendre la recherche sur niveau(x) vers le bas
Exploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
![]()
[article]
Titre : Exploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2023 Article en page(s) : pp19 - 26 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] semis de points
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The classification and mapping accuracy of urban land cover and land use has always been a critical topic and several auxiliary data have been used to improve the classification accuracy. However, to the best of our knowledge, there is limited knowledge of the addition of airborne Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and Topographic Position Index (TPI) for urban land cover and land use classification and mapping. The aim of this study was to explore the addition of airborne lidar-DEM and derived TPI to reflect data of Landsat Operational Land Imager (OLI) in improving the classification accuracy of urban land cover and land use map- ping. Specifically, this study explored the mapping accuracies of urban land cover and land use classifications derived using: 1) standalone Landsat OLI satellite data; 2) Landsat OLI with acquired airborne lidar-DEM ; 3) Landsat OLI with TPI ; and 4) Landsat OLI with airborne lidar-DEM and derived TPI. The results showed that the addition of airborne lidar-DEM and TPI yielded the best overall urban land cover and land use classification accuracy of about 88%. The findings in this study demonstrated that both lidar-DEM and TPI had a positive impact in improving urban land cover and land use classification. Numéro de notice : A2023-045 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00029R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.21-00029R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102354
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp19 - 26[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2022 Article en page(s) : pp 243 - 253 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] données multitemporelles
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The mapping and change detection of land cover and land use are essential for urban management. The aim of this study was to map and monitor the spatial and temporal change in urban land cover and land use in Davidson County, Tennessee in the periods of 2013, 2016, and 2020. The urban land cover and land use categories were classified and mapped using Random Forest algorithm. A combination of Landsat Operational Land Imager (OLI) satellite data with Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and derived Topographic Position Index (TPI) were used in the classification and monitoring of urban land cover and land use change. The urban land cover and land use types were mapped with average overall accuracies of about 87% in 2020, 85% in 2016 and 2013. The overall accuracy increased by around 8%, 9%, and 6% in 2020, 2016, and 2013 classifications respectively when lidarDEMand derived TPIwere added to Landsat OLIsatellite data in the classification relative to standalone Landsat OLI. Total change occurred in about 63% of Davidson County between 2016 and 2020 with significant net gains and losses among land cover and land use types. This information could support land use planning. Numéro de notice : A2022-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00042R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00042R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100320
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 243 - 253[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022041 SL Revue Centre de documentation Revues en salle Disponible Estimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data / Panpan Zhang in Survey review, vol 54 n° 383 (March 2022)
![]()
[article]
Titre : Estimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data Type de document : Article/Communication Auteurs : Panpan Zhang, Auteur ; Lifeng Bao, Auteur ; Dongmei Guo, Auteur Année de publication : 2022 Article en page(s) : pp 106 - 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données GNSS
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] données topographiques
[Termes IGN] Earth Gravity Model 2008
[Termes IGN] géoïde altimétrique
[Termes IGN] Hong-Kong
[Termes IGN] MNS SRTM
[Termes IGN] modèle de géopotentiel local
[Termes IGN] nivellement
[Termes IGN] système de référence altimétriqueRésumé : (auteur) The advent of the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Exploration (GOCE) has changed the global contribution in the determination of high-accuracy global geopotential models (GGMs). In this paper, a spectral expansion method is used to determine the combined GGMs, using the high-resolution EGM2008 model and residual terrain model (RTM) to effectively bridge the spectral gap between the satellite and terrestrial data. The accuracy of the combined GGMs shows improvement compared with GOCE/GRACE-based GGMs and EGM2008 in determining the geopotential of the Hong Kong Principal Datum (HKPD). As a result of the DIR_R5/EGM2008/RTM model and GNSS/levelling, the geopotential value of HKPD is estimated to be 62,636,860.52 m2s−2 with respect to the global geoid W0 = 62,636,853.4 m2s−2. Therefore, the vertical offset between the HKPD and global geoid is about −72.8 cm, which means that the HKPD is 72.8 cm below the global height datum. Numéro de notice : A2022-238 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/00396265.2021.1884794 Date de publication en ligne : 17/02/2021 En ligne : https://doi.org/10.1080/00396265.2021.1884794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100162
in Survey review > vol 54 n° 383 (March 2022) . - pp 106 - 116[article]ReBankment: displacing embankment lines from roads and rivers with a least squares adjustment / Guillaume Touya in International journal of cartography, vol 8 n° 1 (March 2022)
![]()
[article]
Titre : ReBankment: displacing embankment lines from roads and rivers with a least squares adjustment Type de document : Article/Communication Auteurs : Guillaume Touya , Auteur ; Imran Lokhat
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 37 - 53 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de généralisation
[Termes IGN] compensation par moindres carrés
[Termes IGN] données topographiques
[Termes IGN] talus
[Vedettes matières IGN] GénéralisationRésumé : (auteur) While the recent progress on automated generalisation helped National Mapping Agencies to derive topographic maps more and more quickly, there are still practical cartographic issues that require attention. For instance, embankments are represented with line symbols showing the slope of the embankment. This paper proposes an automated algorithm called ReBankment that displaces the embankment lines from the roads and rivers that overlap the embankment symbol. ReBankment is based on a triangulation to identify neighbourhoods, and on a least squares adjustment to displace and distort the embankment line while preserving its shape. This paper also proposes how to handle complex cases and scaling issues. ReBankment is tested on real data from a 1:25k scale topographic map. Numéro de notice : A2022-006 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2021.1972787 Date de publication en ligne : 18/10/2021 En ligne : https://doi.org/10.1080/23729333.2021.1972787 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98838
in International journal of cartography > vol 8 n° 1 (March 2022) . - pp 37 - 53[article]GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules Type de document : Article/Communication Auteurs : Xuke Hu, Auteur ; Hussein S. Al-Olimat, Auteur ; Jens Kersten, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 310 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] classification hybride
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données topographiques
[Termes IGN] extraction de données
[Termes IGN] géobalise
[Termes IGN] microblogue
[Termes IGN] OpenStreetMap
[Termes IGN] répertoire toponymique
[Termes IGN] toponyme
[Termes IGN] TwitterRésumé : (auteur) Extracting precise location information from microblogs is a crucial task in many applications, particularly in disaster response, revealing where damages are, where people need assistance, and where help can be found. A crucial prerequisite to location extraction is place name extraction. In this paper, we present GazPNE: a hybrid approach to place name extraction which fuses rules, gazetteers, and deep learning techniques without requiring any manually annotated data. The core of the approach is to learn the intrinsic characteristics of multi-word place names with deep learning from gazetteers. Specifically, GazPNE consists of a rule-based system to select n-grams from the microblogs that potentially contain place names, and a C-LSTM model that decides if the selected n-gram is a place name or not. The C-LSTM is trained on 388.1 million examples containing 6.8 million positive examples with US and Indian place names extracted from OpenStreetMap and 381.3 million negative examples synthesized by rules. We evaluate GazPNE against the SoTA on a manually annotated 4,500 tweet dataset which contains 9,026 place names from three foods: 2016 in Louisiana (US), 2016 in Houston (US), and 2015 in Chennai (India). GazPNE achieves SotA performance on the test data with an F1 of 0.84. Numéro de notice : A2022-164 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1947507 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1947507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99787
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 310 - 337[article]3D geovisualization for visual analysis of urban climate / Sidonie Christophe in Cybergeo, European journal of geography, vol 2022 ([01/01/2022])
PermalinkPermalinkQuantifying coherence between TDM90, SRTM90 and ASTER90 / Umut Gunes Sefercik in Geocarto international, vol 36 n° 15 ([15/08/2021])
PermalinkRemote sensing method for extracting topographic information on tidal flats using spatial distribution features / Yang Lijun in Marine geodesy, vol 44 n° 5 (September 2021)
PermalinkTree height growth modelling using LiDAR-derived topography information / Milan Kobal in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
PermalinkBasin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery / Zifeng Wang in Remote sensing of environment, Vol 255 (March 2021)
PermalinkAgricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm / Mehrdad Bijandi in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkA regional spatiotemporal analysis of large magnitude snow avalanches using tree rings / Erich Peitzsch in Natural Hazards and Earth System Sciences, Vol 21 n° 2 (February 2021)
PermalinkUsing automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain / R. Niederheiser in GIScience and remote sensing, vol 58 n° 1 (February 2021)
PermalinkRemotely-sensed rip current dynamics and morphological control in high-energy beach environments / Isaac Rodriguez Padilla (2021)
Permalink