Descripteur
Termes descripteurs IGN > géomatique > données localisées > données topographiques
données topographiques |



Etendre la recherche sur niveau(x) vers le bas
Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery / Zifeng Wang in Remote sensing of environment, Vol 255 (March 2021)
![]()
[article]
Titre : Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery Type de document : Article/Communication Auteurs : Zifeng Wang, Auteur ; Junguo Liu, Auteur ; Jinbao Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Asie du sud-est
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] données hydrographiques
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] réseau de drainage
[Termes descripteurs IGN] réseau fluvialRésumé : (auteur) Extraction of drainage networks is an important element of river flow routing in hydrology and large-scale estimates of river behaviors in Earth sciences. Emerging studies with a focus on greenhouse gases reveal that small rivers can contribute to more than half of the global carbon emissions from inland waters (including lakes and wetlands). However, large-scale extraction of drainage networks is constrained by the coarse resolution of observational data and models, which hinders assessments of terrestrial hydrological and biogeochemical cycles. Recognizing that Sentinel-2 satellite can detect surface water up to a 10-m resolution over large scales, we propose a new method named Remote Sensing Stream Burning (RSSB) to integrate high-resolution observational flow location with coarse topography to improve the extraction of drainage network. In RSSB, satellite-derived input is integrated in a spatially continuous manner, producing a quasi-bathymetry map where relative relief is enforced, enabling a fine-grained, accurate, and multitemporal extraction of drainage network. RSSB was applied to the Lancang-Mekong River basin to derive a 10-m resolution drainage network, with a significant reduction in location errors as validated by the river centerline measurements. The high-resolution extraction resulted in a realistic representation of meanders and detailed network connections. Further, RSSB enabled a multitemporal extraction of river networks during wet/dry seasons and before/after the formation of new channels. The proposed method is fully automated, meaning that the network extraction preserves basin-wide connectivity without requiring any postprocessing, hence facilitating the construction of drainage networks data with openly accessible imagery. The RSSB method provides a basis for the accurate representation of drainage networks that maintains channel connectivity, allows a more realistic inclusion of small rivers and streams, and enables a greater understanding of complex but active exchange between inland water and other related Earth system components. Numéro de notice : A2021-191 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2020.112281 date de publication en ligne : 21/01/2021 En ligne : https://doi.org/10.1016/j.rse.2020.112281 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97112
in Remote sensing of environment > Vol 255 (March 2021) . - n° 112281[article]Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm / Mehrdad Bijandi in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Agricultural land partitioning model based on irrigation efficiency using a multi‐objective artificial bee colony algorithm Type de document : Article/Communication Auteurs : Mehrdad Bijandi, Auteur ; Mohammad Karimi, Auteur ; Bahman Farhadi Bansouleh, Auteur ; Wim van der Knaap, Auteur Année de publication : 2021 Article en page(s) : pp 551 - 574 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] irrigation
[Termes descripteurs IGN] optimisation par colonie de fourmis
[Termes descripteurs IGN] parcelle agricole
[Termes descripteurs IGN] planification
[Termes descripteurs IGN] remembrement agricole
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (Auteur) In the process of agricultural land consolidation, the land parcels are optimally redesigned and rearranged in such a way that the dimensions of the resulting parcels are proportional to agricultural criteria such as irrigation discharge, soil texture, and cropping pattern. Besides these criteria, spatial factors like slope, road accessibility, volume of earthwork, and geometrical factors such as size and shape of parcels are also included in the design process of agricultural land partitioning. In this study, a land partitioning model was proposed using a multi‐objective artificial bee colony algorithm (MOABC‐LP) taking into consideration the mentioned factors. Initially, a feasible dimension range of parcels in a block was calculated based on irrigation efficiency. Two partitioning layouts were defined according to the topography and geometry of blocks. The proposed method was applied to a real study area and the results suggest that the land partitioning plan obtained by the MOABC‐LP model, in comparison with a designer's plan, not only makes the shape and size of parcels more compatible with the topographical and agricultural conditions of each block, but also reduces their cut‐and‐fill ratio. Numéro de notice : A2021-210 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12702 date de publication en ligne : 27/10/2020 En ligne : https://doi.org/10.1111/tgis.12702 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97159
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 551 - 574[article]A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings / Erich Peitzsch in Natural Hazards and Earth System Sciences, Vol 21 n° 2 (February 2021)
![]()
[article]
Titre : A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings Type de document : Article/Communication Auteurs : Erich Peitzsch, Auteur ; Jordi Hendrikx, Auteur ; Daniel Stahle, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 533 - 557 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] avalanche
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] dendrochronologie
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] magnitude
[Termes descripteurs IGN] montagneRésumé : (auteur) Snow avalanches affect transportation corridors and settlements worldwide. In many mountainous regions, robust records of avalanche frequency and magnitude are sparse or non-existent. However, dendrochronological methods can be used to fill this gap and infer historical avalanche patterns. In this study, we developed a tree-ring-based avalanche chronology for large magnitude avalanche events (size ≥∼D3) using dendrochronological techniques for a portion of the US northern Rocky Mountains. We used a strategic sampling design to examine avalanche activity through time and across nested spatial scales (i.e., from individual paths, four distinct subregions, and the region). We analyzed 673 samples in total from 647 suitable trees collected from 12 avalanche paths from which 2134 growth disturbances were identified over the years 1636 to 2017 CE. Using existing indexing approaches, we developed a regional avalanche activity index to discriminate avalanche events from noise in the tree-ring record. Large magnitude avalanches, common across the region, occurred in 30 individual years and exhibited a median return interval of approximately 3 years (mean = 5.21 years). The median large magnitude avalanche return interval (3–8 years) and the total number of avalanche years (12–18) varies throughout the four subregions, suggesting the important influence of local terrain and weather factors. We tested subsampling routines for regional representation, finding that sampling 8 random paths out of a total of 12 avalanche paths in the region captures up to 83 % of the regional chronology, whereas four paths capture only 43 % to 73 %. The greatest value probability of detection for any given path in our dataset is 40 %, suggesting that sampling a single path would capture no more than 40 % of the regional avalanche activity. Results emphasize the importance of sample size, scale, and spatial extent when attempting to derive a regional large magnitude avalanche event chronology from tree-ring records. Numéro de notice : A2021-169 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.5194/nhess-21-533-2021 date de publication en ligne : 05/02/2021 En ligne : https://doi.org/10.5194/nhess-21-533-2021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97108
in Natural Hazards and Earth System Sciences > Vol 21 n° 2 (February 2021) . - pp 533 - 557[article]Detecting classic Maya settlements with Lidar-derived relief visualizations / Amy E. Thompson in Remote sensing, vol 12 n° 17 (September 2020)
![]()
[article]
Titre : Detecting classic Maya settlements with Lidar-derived relief visualizations Type de document : Article/Communication Auteurs : Amy E. Thompson, Auteur Année de publication : 2020 Article en page(s) : 29 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] Belize
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] fouille archéologique
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] relief
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] site archéologiqueRésumé : (auteur) In the past decade, Light Detection and Ranging (lidar) has fundamentally changed our ability to remotely detect archaeological features and deepen our understanding of past human-environment interactions, settlement systems, agricultural practices, and monumental constructions. Across archaeological contexts, lidar relief visualization techniques test how local environments impact archaeological prospection. This study used a 132 km2 lidar dataset to assess three relief visualization techniques—sky-view factor (SVF), topographic position index (TPI), and simple local relief model (SLRM)—and object-based image analysis (OBIA) on a slope model for the non-automated visual detection of small hinterland Classic (250–800 CE) Maya settlements near the polities of Uxbenká and Ix Kuku’il in Southern Belize. Pedestrian survey in the study area identified 315 plazuelas across a 35 km2 area; the remaining 90 km2 in the lidar dataset is yet to be surveyed. The previously surveyed plazuelas were compared to the plazuelas visually identified on the TPI and SLRM. In total, an additional 563 new possible plazuelas were visually identified across the lidar dataset, using TPI and SLRM. Larger plazuelas, and especially plazuelas located in disturbed environments, are often more likely to be detected in a visual assessment of the TPI and SLRM. These findings emphasize the extent and density of Classic Maya settlements and highlight the continued need for pedestrian survey to ground-truth remotely identified archaeological features and the impact of modern anthropogenic behaviors for archaeological prospection. Remote sensing and lidar have deepened our understanding of past human settlement systems and low-density urbanism, processes that we experience today as humans residing in modern cities Numéro de notice : A2020-598 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12172838 date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.3390/rs12172838 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95944
in Remote sensing > vol 12 n° 17 (September 2020) . - 29 p.[article]Recognition of building group patterns using graph convolutional network / Rong Zhao in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
![]()
[article]
Titre : Recognition of building group patterns using graph convolutional network Type de document : Article/Communication Auteurs : Rong Zhao, Auteur ; Tinghua Ai, Auteur ; Wenhao Yu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 400 - 417 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] généralisation du bâti
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] reconnaissance de formesRésumé : (auteur) Recognition of building group patterns is of great significance for understanding and modeling the urban space. However, many current methods cannot fully utilize spatial information and have trouble efficiently dealing with topographic data with high complexity. The design of intelligent computational models that can act directly on topographic data to extract spatial features is critical. To this end, we propose a novel deep neural network based on graph convolutions to automatically identify building group patterns with arbitrary forms. The method first models buildings by a general graph, and then the neural network simultaneously learns the structural information as well as vertex attributes to classify building objects. We apply this method to real building data, and the experimental results show that the proposed method can effectively capture spatial information to make more accurate predictions than traditional methods. Numéro de notice : A2020-510 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1757512 date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1757512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95663
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 400 - 417[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 SL Revue Centre de documentation Revues en salle Disponible Methodology of the automatic generalization of buildings, road networks, forests and surface waters: a case study based on the Topographic Objects Database in Poland / Izabela Karsznia in Geocarto international, vol 35 n° 7 ([15/05/2020])
PermalinkRecognizing linear building patterns in topographic data by using two new indices based on Delaunay triangulation / Xianjin He in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkRecent sea level change in the black sea from satellite altimetry and tide gauge observations / Nevin Betül Avsar in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkHigh‐resolution national land use scenarios under a shrinking population in Japan / Haruka Ohashi in Transactions in GIS, vol 23 n° 4 (August 2019)
PermalinkQuantification of airborne lidar accuracy in coastal dunes (Fire Island, New York) / William J. Schmelz in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 2 (February 2019)
PermalinkMachine learning and geographic information systems for large-scale mapping of renewable energy potential / Dan Assouline (2019)
PermalinkPermalinkProduction de données topographiques de référence de l'Eurométropole de Strasbourg / Olivier Banaszak in XYZ, n° 153 (décembre 2017 - février 2018)
PermalinkPredicting palustrine wetland probability using random forest machine learning and digital elevation data-derived terrain variables / Aaron E. Maxwell in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 6 (June 2016)
PermalinkQualification de la précision de données topographiques issues d’acquisitions par méthode scanner laser dynamique ferroporté / Audrey Jacquin in XYZ, n° 146 (mars - mai 2016)
Permalink