Descripteur
Termes IGN > 1- Outils - instruments et méthodes > document > document géographique > répertoire toponymique
répertoire toponymiqueVoir aussi |
Documents disponibles dans cette catégorie (38)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Lessons learned from using historical maps to create a digital gazetteer of historical places / Mark Polczynski in International journal of cartography, vol 8 n° 3 (November 2022)
[article]
Titre : Lessons learned from using historical maps to create a digital gazetteer of historical places Type de document : Article/Communication Auteurs : Mark Polczynski, Auteur ; Michael Polczynski, Auteur Année de publication : 2022 Article en page(s) : pp 326 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte ancienne
[Termes IGN] données anciennes
[Termes IGN] géodatabase
[Termes IGN] géoréférencement
[Termes IGN] répertoire toponymique
[Termes IGN] site historique
[Termes IGN] système d'information historiqueRésumé : (auteur) The purpose of this document is to provide guidance to new and inexperienced gazetteer builders, especially those constructing a digital gazetteer of historical places using historical maps, and in particular those building a gazetteer as a means to an end of answering specific research questions vs. those building a gazetteer as an end in itself to be used by the general research community. In support of this target audience, the following is an accumulation of lessons learned while using historical maps to create digital gazetteers of historical places. The lessons cover gazetteer planning, design, and construction issues. As an overview of how to use historical maps to create a digital gazetteer of historical places, this document can provide new and inexperienced gazetteer builders with starting points for in-depth study of these and associated issues. An example gazetteer is provided to illustrate the lessons covered here. Numéro de notice : A2022-747 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2021.2007444 Date de publication en ligne : 14/12/2021 En ligne : https://doi.org/10.1080/23729333.2021.2007444 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101732
in International journal of cartography > vol 8 n° 3 (November 2022) . - pp 326 - 342[article]ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
[article]
Titre : ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Shu Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] échantillonnage de données
[Termes IGN] OpenStreetMap
[Termes IGN] reconnaissance automatique
[Termes IGN] répertoire toponymique
[Termes IGN] site wiki
[Termes IGN] toponymeRésumé : (auteur) Toponym recognition is used to extract toponyms from natural language texts, which is a fundamental task of ubiquitous geographic information applications. Existing toponym recognition methods with state-of-the-art performance mainly leverage supervised learning (i.e., deep-learning-based approaches) with parameters learned from massive, labeled datasets that must be annotated manually. This is a great inconvenience when model training needs to fit different domain texts, especially those of social media messaging. To address this issue, this article proposes a weakly supervised Chinese toponym recognition (ChineseTR) architecture that leverages a training dataset creator that generates training datasets automatically based on word collections and associated word frequencies from various texts and an extension recognizer that employs a basic bidirectional recurrent neural network based on particular features designed for toponym recognition. The results show that the proposed ChineseTR achieves a 0.76 F1 score in a corpus with a 0.718 out-of-vocabulary rate and a 0.903 in-vocabulary rate. All comparative experiments demonstrate that ChineseTR is an effective and scalable architecture that recognizes toponyms. Numéro de notice : A2022-462 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12902 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1111/tgis.12902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100796
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1256 - 1279[article]GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
[article]
Titre : GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules Type de document : Article/Communication Auteurs : Xuke Hu, Auteur ; Hussein S. Al-Olimat, Auteur ; Jens Kersten, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 310 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] classification hybride
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données topographiques
[Termes IGN] extraction de données
[Termes IGN] géobalise
[Termes IGN] microblogue
[Termes IGN] OpenStreetMap
[Termes IGN] répertoire toponymique
[Termes IGN] toponyme
[Termes IGN] TwitterRésumé : (auteur) Extracting precise location information from microblogs is a crucial task in many applications, particularly in disaster response, revealing where damages are, where people need assistance, and where help can be found. A crucial prerequisite to location extraction is place name extraction. In this paper, we present GazPNE: a hybrid approach to place name extraction which fuses rules, gazetteers, and deep learning techniques without requiring any manually annotated data. The core of the approach is to learn the intrinsic characteristics of multi-word place names with deep learning from gazetteers. Specifically, GazPNE consists of a rule-based system to select n-grams from the microblogs that potentially contain place names, and a C-LSTM model that decides if the selected n-gram is a place name or not. The C-LSTM is trained on 388.1 million examples containing 6.8 million positive examples with US and Indian place names extracted from OpenStreetMap and 381.3 million negative examples synthesized by rules. We evaluate GazPNE against the SoTA on a manually annotated 4,500 tweet dataset which contains 9,026 place names from three foods: 2016 in Louisiana (US), 2016 in Houston (US), and 2015 in Chennai (India). GazPNE achieves SotA performance on the test data with an F1 of 0.84. Numéro de notice : A2022-164 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1947507 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1947507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99787
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 310 - 337[article]Generating geographical location descriptions with spatial templates: a salient toponym driven approach / Mark M. Hall in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
[article]
Titre : Generating geographical location descriptions with spatial templates: a salient toponym driven approach Type de document : Article/Communication Auteurs : Mark M. Hall, Auteur ; Christopher B. Jones, Auteur Année de publication : 2022 Article en page(s) : pp 55 - 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] image Flickr
[Termes IGN] OpenStreetMap
[Termes IGN] relation spatiale
[Termes IGN] répertoire toponymique
[Termes IGN] saillance
[Termes IGN] toponyme
[Termes IGN] traitement du langage naturelRésumé : (auteur) Natural language descriptions of geographical locations are used frequently in daily life and there is a motivation to create systems that generate such descriptions automatically, for purposes such as documentation of where events have taken place, where a person is located, where photos were taken and where plants and animals are located. Typically location descriptions combine references to named geographical features with vague spatial relational terms, such as near, north of and at that relate locations to the features. Here we describe a system for generating location descriptions, that combines spatial templates, that model the applicability of different spatial relations relative to a reference location, with toponyms in the vicinity of the described location that are selected according to aspects of salience. The toponyms are retrieved from a gazetteer service based on OpenStreetMap for which we create a hierarchical feature classification scheme to facilitate selection of toponyms according to distinctiveness of their feature types and other aspects of salience. The advantages of the approach are demonstrated in a user study, relative to an existing state of the art system and to other baseline approaches that include manually created captions and the automated methods of two widely used photo captioning systems. Numéro de notice : A2022-043 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article DOI : 10.1080/13658816.2021.1913498 Date de publication en ligne : 28/04/2021 En ligne : https://doi.org/10.1080/13658816.2021.1913498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99402
in International journal of geographical information science IJGIS > vol 36 n° 1 (January 2022) . - pp 55 - 85[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022011 SL Revue Centre de documentation Revues en salle Disponible A topic model based framework for identifying the distribution of demand for relief supplies using social media data / Ting Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A topic model based framework for identifying the distribution of demand for relief supplies using social media data Type de document : Article/Communication Auteurs : Ting Zhang, Auteur ; Shi Shen, Auteur ; Changxiu Cheng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2216 - 2237 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] cartographie thématique
[Termes IGN] catastrophe naturelle
[Termes IGN] cyclone
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Pacifique ouest
[Termes IGN] Philippines
[Termes IGN] répertoire toponymique
[Termes IGN] secours d'urgenceRésumé : (auteur) Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations. Numéro de notice : A2021-757 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1869746 Date de publication en ligne : 07/01/2021 En ligne : https://doi.org/10.1080/13658816.2020.1869746 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98772
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2216 - 2237[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible Enjeux et méthodes d’un liage de référentiels géographiques : l’exemple du projet de recherche ALEGORIA / Clara Lelièvre (2021)PermalinkSherloc: a knowledge-driven algorithm for geolocating microblog messages at sub-city level / Laura Di Rocco in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)PermalinkA natural language processing and geospatial clustering framework for harvesting local place names from geotagged housing advertisements / Yingjie Hu in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkGeoTxt: A scalable geoparsing system for unstructured text geolocation / Morteza Karimzadeh in Transactions in GIS, vol 23 n° 1 (February 2019)PermalinkData linking by indirect spatial referencing systems, [report of] EuroSDR - EuroGeographics seminar, September 5th - 6th, 2018 - Paris, France / Bénédicte Bucher (2019)PermalinkHistorical collaborative geocoding / Rémi Cura in ISPRS International journal of geo-information, vol 7 n° 7 (July 2018)PermalinkToponym matching through deep neural networks / Rui Santos in International journal of geographical information science IJGIS, vol 32 n° 1-2 (January - February 2018)PermalinkReference data enhancement for geographic information retrieval using linked data / Tiago H. V. M. Moura in Transactions in GIS, vol 21 n° 4 (August 2017)PermalinkSemantic historical gazetteers and related NLP and corpus linguistics applications / Carmen Brando in Journal of Map & Geography Libraries, vol 13 n° 1 ([01/05/2017])Permalinkµ-shapes: Delineating urban neighborhoods using volunteered geographic information / Matt Aadland in Journal of Spatial Information Science, JoSIS, n° 12 (March 2016)Permalink