Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > lasergrammétrie
lasergrammétrieVoir aussi |
Documents disponibles dans cette catégorie (351)



Etendre la recherche sur niveau(x) vers le bas
Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Semantic segmentation of urban textured meshes through point sampling / Grégoire Grzeczkowicz in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Semantic segmentation of urban textured meshes through point sampling Type de document : Article/Communication Auteurs : Grégoire Grzeczkowicz, Auteur ; Bruno Vallet , Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 177 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] échantillonnage de données
[Termes IGN] maillage
[Termes IGN] maille carrée
[Termes IGN] maille texturée
[Termes IGN] maille triangulaire
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] traitement de nuage de pointsRésumé : (auteur) Textured meshes are becoming an increasingly popular representation combining the 3D geometry and radiometry of real scenes. However, semantic segmentation algorithms for urban mesh have been little investigated and do not exploit all radiometric information. To address this problem, we adopt an approach consisting in sampling a point cloud from the textured mesh, then using a point cloud semantic segmentation algorithm on this cloud, and finally using the obtained semantic to segment the initial mesh. In this paper, we study the influence of different parameters such as the sampling method, the density of the extracted cloud, the features selected (color, normal, elevation) as well as the number of points used at each training period. Our result outperforms the state-of-the-art on the SUM dataset, earning about 4 points in OA and 18 points in mIoU. Numéro de notice : A2022-427 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2022-177-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-177-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100733
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 177 - 184[article]Two-phase forest inventory using very-high-resolution laser scanning / Henrik J. Persson in Remote sensing of environment, vol 271 (March- 2 2022)
![]()
[article]
Titre : Two-phase forest inventory using very-high-resolution laser scanning Type de document : Article/Communication Auteurs : Henrik J. Persson, Auteur ; Kenneth Olofsson, Auteur ; Johan Holmgren, Auteur Année de publication : 2022 Article en page(s) : n° 112909 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] échantillonnage
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] inférence statistique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement forestier
[Termes IGN] Suède
[Termes IGN] télémétrie laser terrestre
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) In this study, we compared a two-phase laser-scanning-based forest inventory of stands versus a traditional field inventory using sample plots. The two approaches were used to estimate stem volume (VOL), Lorey's mean height (HL), Lorey's stem diameter (DL), and VOL per tree species in a study area in Sweden. The estimates were compared at the stand level with the harvested reference values obtained using a forest harvester. In the first phase, a helicopter acquired airborne laser scanning (ALS) data with >500 points/m2 along 50-m wide strips across the stands. These strips intersected systematic plots in phase two, where terrestrial laser scanning (TLS) was used to model DL for individual trees. In total, phase two included 99 plots across 10 boreal forest stands in Sweden (lat 62.9° N, long 16.9° E). The single trees were segmented in both the ALS and TLS data and linked to each other. The very-high-resolution ALS data enabled us to directly measure tree heights and also classify tree species using a convolutional neural network. Stem volume was predicted from the predicted DBH and the estimated height, using national models, and aggregated at the stand level. The study demonstrates a workflow to derive forest variables and stand-level statistics that has potential to replace many manual field inventories thanks to its time efficiency and improved accuracy. To evaluate the inventories, we estimated bias, RMSE, and precision, expressed as standard error. The laser-scanning-based inventory provided estimates with an accuracy considerably higher than the field inventory. The RMSE was 17 m3/ha (7.24%), 0.9 m (5.63%), and 16 mm (5.99%) for VOL, HL, and DL respectively. The tree species classification was generally successful and improved the three species-specific VOL estimates by 9% to 74%, compared to field estimates. In conclusion, the demonstrated laser-scanning-based inventory shows potential to replace some future forest inventories, thanks to the increased accuracy demonstrated empirically in the Swedish forest study area. Numéro de notice : A2022-249 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112909 Date de publication en ligne : 22/01/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112909 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100201
in Remote sensing of environment > vol 271 (March- 2 2022) . - n° 112909[article]3D modeling of urban area based on oblique UAS images - An end-to-end pipeline / Valeria-Ersilia Oniga in Remote sensing, vol 14 n° 2 (January-2 2022)
![]()
[article]
Titre : 3D modeling of urban area based on oblique UAS images - An end-to-end pipeline Type de document : Article/Communication Auteurs : Valeria-Ersilia Oniga, Auteur ; Ana-Ioana Breaban, Auteur ; Norbert Pfeifer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] Bâti-3D
[Termes IGN] CityGML
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] indice de végétation
[Termes IGN] lasergrammétrie
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] Roumanie
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) 3D modelling of urban areas is an attractive and active research topic, as 3D digital models of cities are becoming increasingly common for urban management as a consequence of the constantly growing number of people living in cities. Viewed as a digital representation of the Earth’s surface, an urban area modeled in 3D includes objects such as buildings, trees, vegetation and other anthropogenic structures, highlighting the buildings as the most prominent category. A city’s 3D model can be created based on different data sources, especially LiDAR or photogrammetric point clouds. This paper’s aim is to provide an end-to-end pipeline for 3D building modeling based on oblique UAS images only, the result being a parametrized 3D model with the Open Geospatial Consortium (OGC) CityGML standard, Level of Detail 2 (LOD2). For this purpose, a flight over an urban area of about 20.6 ha has been taken with a low-cost UAS, i.e., a DJI Phantom 4 Pro Professional (P4P), at 100 m height. The resulting UAS point cloud with the best scenario, i.e., 45 Ground Control Points (GCP), has been processed as follows: filtering to extract the ground points using two algorithms, CSF and terrain-mark; classification, using two methods, based on attributes only and a random forest machine learning algorithm; segmentation using local homogeneity implemented into Opals software; plane creation based on a region-growing algorithm; and plane editing and 3D model reconstruction based on piece-wise intersection of planar faces. The classification performed with ~35% training data and 31 attributes showed that the Visible-band difference vegetation index (VDVI) is a key attribute and 77% of the data was classified using only five attributes. The global accuracy for each modeled building through the workflow proposed in this study was around 0.15 m, so it can be concluded that the proposed pipeline is reliable. Numéro de notice : A2022-101 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14020422 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.3390/rs14020422 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99566
in Remote sensing > vol 14 n° 2 (January-2 2022) . - n° 422[article]Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (15 december 2021)
![]()
[article]
Titre : Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur ; Christoph Gollob, Auteur ; Ralf Krasnitzer, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Autriche
[Termes IGN] bois sur pied
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] échantillonnage
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle de régression
[Termes IGN] modèle mathématique
[Termes IGN] tempête
[Termes IGN] volume en bois
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A spatial regression model framework is presented to predict growing stock volume loss due to storm Adrian which caused heavy forest damage in the upper Gail valley in Carinthia, Austria, in October 2018. Model parameters were estimated using growing stock volume measured with a terrestrial laser scanner on 62 sample plots distributed across five sub-regions. Predictor variables were derived from high resolution vegetation height measurements collected during an airborne laser scanning campaign. Non-spatial and spatial candidate models were proposed and assessed based on fit to observed data and out-of-sample prediction. Spatial Gaussian processes associated model intercepts and regression coefficients were used to capture spatial dependence. Results show a spatially-varying coefficient model, which allowed the intercept and regression coefficients to vary spatially, yielded the best fit and prediction. Two approaches were considered for prediction over blowdown areas: 1) an areal approach that viewed each blowdown as a single prediction unit indexed by its centroid; and 2) a block approach where each blowdown was partitioned into smaller prediction units to better align with sample plots’ spatial support. Joint prediction was used to acknowledge spatial dependence among block units. Results demonstrated the block approach is preferable as it mitigated change-of-support issues encountered in the areal approach. Despite the small sample size, predictions for 55% of the total 564 blowdown areas, accounting for 93% of the total loss, had a coefficient of variation less than 25%. Key advantages of the proposed regression framework and chosen Bayesian inferential paradigm, were the ability to quantify uncertainty in spatial covariance parameters, propagate parameter uncertainty through to prediction, and provide statistically valid prediction point and interval estimates for individual blowdowns and collections of blowdowns at the sub-region and region scale via posterior predictive distribution summaries. Numéro de notice : A2021-770 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119714 Date de publication en ligne : 07/10/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119714 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98822
in Forest ecology and management > vol 502 (15 december 2021) . - n° 119714[article]Point clouds for use in Building Information Models (BIM) / Robert Klinc in Geodetski vestnik, vol 65 n° 4 (December 2021 - February 2022)
PermalinkGaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne Lidar point clouds / Longjie Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
PermalinkModel-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing / Michael L. Benson in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
PermalinkIntegration of laser scanner and photogrammetry for heritage BIM enhancement / Yahya Alshawabkeh in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
PermalinkDetecting archaeological features with airborne laser scanning in the alpine tundra of Sápmi, Northern Finland / Oula Seitsonen in Remote sensing, vol 13 n° 8 (April-2 2021)
PermalinkDevelopment of German-Ukrainian cooperations for education and research in photogrammetry and laser scanning / Thomas Luhmann in Geo-spatial Information Science, vol 24 n° 1 (March 2021)
PermalinkDeveloping a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data / Juan Guerra-Hernández in Forest ecology and management, vol 481 (February 2021)
PermalinkPermalinkPermalinkCorrection radiométrique et recalage de nuages de points pour la reconstruction tridimensionnelle d'oeuvres du patrimoine culturel / Nathan Sanchiz (2021)
Permalink